Nhận thấy \(\)\(\dfrac{1}{1.1!}=1\); \(\dfrac{1}{2.2!}=\dfrac{1}{4}\)
Đặt \(P=\dfrac{1}{3.3!}+...+\dfrac{1}{2013.2013!}\)
\(P=\dfrac{1}{3.1.2.3}+...+\dfrac{1}{2013.1.2...2013}\)
\(P< \dfrac{1}{1.2.3}+...+\dfrac{1}{2011.2012.2013}\)
\(P< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}-\dfrac{1}{2012.2013}\right)\)
\(P< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2012.2013}\right)=\dfrac{1}{4}-\dfrac{1}{2.2012.2013}\)
\(P< \dfrac{1}{4}\)
\(A< \dfrac{1}{4}+\dfrac{1}{4}+1=\dfrac{3}{2}\left(đpcm\right)\)