Chứng minh rằng các tổng sau không phải là số tự nhiên :
a) \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
b) \(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{8}\)
c) \(C=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
Chứng minh rằng
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)= \(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
Chứng minh rằng :
a) \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\)
b) \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)
Chứng minh rằng : \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
BT5: Chứng minh rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
Cho A gồm 100 số hạng :\(\dfrac{1}{1.1!}\) + \(\dfrac{1}{2.2!}\) + \(\dfrac{1}{3.3!}\) + ... + \(\dfrac{1}{2013.2013!}\)
Chứng minh rằng : A < \(\dfrac{3}{2}\)
Bài 1: Chứng minh rằng :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
Bài 2: Chứng minh rằng :
Cho S =\(3^0+3^2+3^4+3^6+...+3^{2002}\)
a.Tính S
b.Chứng minh rằng S chia hết cho 7
Chứng minh rằng :
\(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Chứng minh rằng:
1) B =\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}>1\)
2) \(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{500}{5^{500}}<100\)
3) \(C=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{500^3}<\dfrac{1}{4}\)
4) \(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}<100\)
Làm giúp mình sớm nha! Thanks.