Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nhien

Những câu hỏi liên quan
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 20:24

I zì:vv

a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)

Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)

b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Vậy MaxB=21 khi x=-4

Nguyễn Huy Vũ
Xem chi tiết
2611
13 tháng 8 2023 lúc 10:22

`\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12`      `ĐK: x >= 1/2`

`<=>2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12`

`<=>4\sqrt{2x-1}=12`

`<=>\sqrt{2x-1}=3`

`<=>2x-1=9`

`<=>x=5` (t/m)

Vậy `S={5}`.

Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 10:20

\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)

=>\(4\sqrt{2x-1}=12\)

=>\(\sqrt{2x-1}=3\)

=>2x-1=9

=>2x=10

=>x=5

HT.Phong (9A5)
13 tháng 8 2023 lúc 10:24

\(\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12\) (ĐK: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)

\(\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\)

\(\Leftrightarrow\left(2-6+8\right)\sqrt{2x-1}=12\)

\(\Leftrightarrow4\sqrt{2x-1}=12\)

\(\Leftrightarrow\sqrt{2x-1}=12:4\)

\(\Leftrightarrow\sqrt{2x-1}=3\)

\(\Leftrightarrow2x-1=9\)

\(\Leftrightarrow2x=9+1\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(x=5\)

Nguyễn Bá Thông
Xem chi tiết
Lê Tài Bảo Châu
18 tháng 9 2020 lúc 0:42

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
18 tháng 9 2020 lúc 6:23

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

Khách vãng lai đã xóa
FL.Han_
18 tháng 9 2020 lúc 15:07

\(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4>0\forall x\)

\(\Rightarrowđpcm\)

\(B=4x^2+4x+11\)

\(=\left[\left(2x\right)^2+2.2x+1\right]+10\)

\(=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu"="xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=\frac{-1}{2}\)

\(Min_B=10\Leftrightarrow x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Minh Ngọc Đoàn
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:24

\(A=2x^2+8x-24\)

\(=2\left(x^2+4x-12\right)\)

\(=2\left[x^2+4x-4-8\right]\)

\(=2\left[\left(x-2\right)^2-8\right]\)

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2-8\ge-8\)

\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)

Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)

Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:29

\(B=x^2-8x+5=x^2-8x+16-9\)

\(=x^2-2\left(4x\right)+4^2-9\)

\(=\left(x-4\right)^2-9\)

\(\left(x-4\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2-9\ge-9\)

Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)

BEBH
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 14:50

A=4x^2+8x+4+1

=(2x+2)^2+1>=1

Dấu = xảy ra khi x=-1

Trần Lê Lâm Nguyên
Xem chi tiết
Vì Văn Ỏm
Xem chi tiết
Trần Ái Linh
4 tháng 7 2021 lúc 22:09

`A=x^2+8x+10`

`=x^2+2.x.4+4^2-6`

`=(x+4)^2-6`

Có: `(x+4)^2 >=0 forall x => (x+4)^2-6 >=-6`

`=> A_(min)=-6 <=> x=-4`.

hnamyuh
4 tháng 7 2021 lúc 22:09

\(x^2+8x+10=\left(x^2+8x+16\right)-16+10=\left(x+4\right)^2-6\)

Vì \(\left(x+4\right)^2\ge0\) nên \(A\ge-6\)

Vậy GTNN của A là -6 

Dấu "=" xảy ra \(\text{⇔}x+4=0\text{⇔}x=-4\)

Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 22:11

4Ta có: \(A=x^2+8x+10\)

\(=x^2+8x+16-6\)

\(=\left(x+4\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Trương Minh Ngọc
Xem chi tiết
minh nguyệt
Xem chi tiết