`A=x^2+8x+10`
`=x^2+2.x.4+4^2-6`
`=(x+4)^2-6`
Có: `(x+4)^2 >=0 forall x => (x+4)^2-6 >=-6`
`=> A_(min)=-6 <=> x=-4`.
\(x^2+8x+10=\left(x^2+8x+16\right)-16+10=\left(x+4\right)^2-6\)
Vì \(\left(x+4\right)^2\ge0\) nên \(A\ge-6\)
Vậy GTNN của A là -6
Dấu "=" xảy ra \(\text{⇔}x+4=0\text{⇔}x=-4\)
4Ta có: \(A=x^2+8x+10\)
\(=x^2+8x+16-6\)
\(=\left(x+4\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4