Biểu thức (3x2-10x+3)(4x-5) âm khi và chỉ khi
Lập bảng xét dấu biểu thức sau: f(x) = (3x2 - 10x + 3)(4x - 5)
f(x) = (3x2 – 10x + 3)(4x – 5)
+ Tam thức 3x2 – 10x + 3 có hai nghiệm x = 1/3 và x = 3, hệ số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc x > 3 và mang dấu – nếu 1/3 < x < 3.
+ Nhị thức 4x – 5 có nghiệm x = 5/4.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (1/3; 5/4) ∪ x ∈ (3; +∞)
f(x) = 0 khi x ∈ {1/3; 5/4; 3}
f(x) < 0 khi x ∈ (–∞; 1/3) ∪ (5/4; 3)
biểu thức f ( x)=3x^3-7x+4 âm khi và chỉ khi Giúp vs em
Lời giải:
$3x^3-7x+4<0$
$\Leftrightarrow (x-1)(3x^2+3x-4)<0$
Điều này xảy ra khi mà:
TH1: $x-1>0$ và $3x^2+3x-4<0$
$\Leftrightarrow x>1$ và $3x^2+3x-4<0$
Với $x>1$ thì $3x^2+3x-4> 3+3-4>0$ nên điều này không thể xảy ra.
TH2: $x-1<0$ và $3x^2+3x-4>0$
$\Leftrightarrow x<1$ và $3x^2+3x-4>0$
$\Leftrightarrow x<1$ và $(x-\frac{-3+\sqrt{57}}{6})(x-\frac{-3-\sqrt{57}}{6})>0$
$\Leftrightarrow x<1$ và ($x> \frac{-3+\sqrt{57}}{6}$ hoặc $x< \frac{-3-\sqrt{57}}{6})$
$\Leftrightarrow \frac{-3+\sqrt{57}}{6}< x< 1$ hoặc $x< \frac{-3-\sqrt{57}}{6}$
Tìm số f(x) = x3 – 3x2 + 1. Đạo hàm của hàm số f(x) âm khi và chỉ khi.
A. 0 < x < 2.
B. x < 1.
C. x < 0 hoặc x > 1
D. x < 0 hoặc x > 2.
Chọn A.
Ta có: f’(x) = 3x2 – 6x.
f’(x) < 0 ⇔ 3x2 – 6x < 0 ⇔ 0 < x < 2.
Hai biểu thức 4x^2/3-2x và 9/3-2x có giá trị bằng nhau khi và chỉ khi
A.x=-3/2
B.x=+-3/2
C.x=3/2
D.x=-9/4
ta có: \(\dfrac{4x^2}{3-2x}=\dfrac{9}{3-2x}\)ĐK : \(x\ne\dfrac{3}{2}\)
\(\Rightarrow4x^2-9=0\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow x=\dfrac{3}{2}\left(ktm\right);x=-\dfrac{3}{2}\)
-> Chọn A
Tính giá trị của phân thức:
a) x 2 − 1 2 x 2 − 3 x + 1 với x ≠ 1 và x ≠ 1 2 tại 2 x + 1 = 3 ;
b) 3 x 2 − 10 x + 3 x 2 − 4 x + 3 với x ≠ 2 ; x ≠ 3 tại x 2 − 8 x + 15 = 0 .
Bài 1: Rút gọn rồi tính giá trị biểu thức:
a) A = 4x2.(-3x2 + 1) + 6x2.( 2x2 – 1) + x2 khi x = -1
b) B = x2.(-2y3 – 2y2 + 1) – 2y2.(x2y + x2) khi x = 0,5 và y = -1/2
Bài 2: Tìm x, biết:
a) 2(5x - 8) – 3(4x – 5) = 4(3x – 4) +11
b) 2x(6x – 2x2) + 3x2(x – 4) = 8
c) (2x)2(4x – 2) – (x3 – 8x2) = 15
Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
P = x(2x + 1) – x2(x+2) + x3 – x +3
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
\(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\\ P=2x^2+x-x^3-2x^2+x^3-x+3\\ P=3\left(đfcm\right)\)
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
mn ơi,giúp em với ạ,em cảm ơn ạ
Bài 2. Tính giá trị biểu thức:
a) A = (4x + y)(4x − y) − 8x(2x − 1) khi x = 3, y = −1;
b) B = 16x(4x2− 5) − (4x + 1)(16x2− 4x + 1) khi x =1/5
c) C = 3x2− 2x + 3y2− 2y + 6xy − 100 khi x + y = 10.
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)