giải bất phương trình
(x^3-27)(x^3-1)(2x+3-x^2) >=0
(x^3-27)(x^3-1)(2x+3-x^2)>0
giải bất phương trình
1.Giải bất phương trình: 3* căn[1-(3/x)] + căn[3x-(27/x)] >= x
2. Tìm m để bất phương trình [(10-m)x^2-2(m+2)x+1]/[căn(x^2-2x+2] < 0 có nghiệm
Cảm ơn nhiều những ai giúp em ạ!
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải bất phương trình:\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)
\(\left(x^3-27\right)\left(x^3-1\right)\left(2x+3-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left[4-\left(x-1\right)^2\right]\ge0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{3}{2}\right)^2+\frac{27}{4}\right]\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(4-x+1\right)\left(4+x-1\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\left[...\right]\left[...\right]\ge0\)(1)
Do [...] và [...] > 0
nên \(\left(1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(5-x\right)\left(x+3\right)\ge0\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+3\right)\le0\)
Có: \(x-5< x-3< x-1< x+3\)
Nên xảy ra các trường hợp sau :
TH1:\(\hept{\begin{cases}x-5\le0\\x-3\ge0\end{cases}}\)(Tự giải)
TH2:\(\hept{\begin{cases}x-1\le0\\x+3\ge0\end{cases}}\)(Tự giải)
Cuối cùng gộp khoảng (Nếu được)
Kết luận......
giải các bất phương trình sau
a)2x-1+5.(3-x)>0 b)2x-2/5 +3/10 +x-2/4
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
giải các bất phương trình sau:
1) \(\dfrac{x^2-2x+5}{x-2}-x+1\ge0\) 2) \(\dfrac{2x-3}{x+1}-2< 0\)
1) \(ĐK:x\ne2\)
Nếu \(x>2\)
BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)
⇔\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)
Nếu \(x< 2\)
BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)
⇔\(-x^2+2x-5-x^2+3x-2\ge0\)
⇔\(-2x^2+5x-7\ge0\)
⇔\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)
⇔\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)
⇔\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\)
S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]
2) \(ĐK:x\ne-1\)
Nếu \(x>-1\)
BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)
⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))
Nếu \(x< -1\)
BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)
Vậy S=....
giải bất phương trình (x-1)x(3-2x)/2x-4 > 0
\(y=\dfrac{\left(x-1\right)\left(3-2x\right)}{2x-4}>0\)
nghiệm của y: x - 1 = 0 <=> x = 1
3 - 2x = 0 <=> x = 3/2
y không xác định: 2x - 4 = 0 <=> x = 2
x | -∞ 1 3/2 2 +∞ |
x - 1 | - 0 + | + | + |
3 - 2x | - | - 0 + | + |
2x - 4 | - | - | - 0 + |
dấu y | - 0 + 0 - || + |
vậy: \(S=\left(1;\dfrac{3}{2}\right)\cup\left(2;+\text{∞}\right)\)