Bài 1 tìm các cặp số nguyên (x;y) thỏa mãn
\(a,x+y+xy=4\)
\(b,xy-2y-3=3x-x^2\)
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Bài 4:
Ta đặt: \(S=6^m+2^n+2\)
TH1: n chẵn thì:
\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)
Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)
Đồng thời S là scp
Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)
\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)
Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ
Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)
Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)
Thế vào ban đầu: \(S=8+2^n=36k^2\)
Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)
\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)
\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)
Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))
Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)
TH2: n là số lẻ
\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)
\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn
\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ
Chia tiếp thành 2TH nhỏ:
TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ
Ta thu đc: m=1 và thế vào ban đầu
\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)
\(\Leftrightarrow2^{n-2}+2=k^2\)
Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)
Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)
\(\Leftrightarrow2^{n-3}+1=2t^2\)
\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3
Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)
TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ
Suy ra: n=1
Thế vào trên: \(6^m+4=4k^2\)
\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)
Và \(6^p-6^q=4\)
\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)
\(\Rightarrow k\notin Z\)
Vậy \(\left(m;n\right)=\left(1;3\right)\)
P/S: mk không kiểm lại nên có thể sai
bài 1 tìm các cặp số nguyên x;y biết
a. ( x-2).(y-3)=5
b. (1-x)(y+1)=3
Do x, y nguyên
nên : x-2 và y-3 cũng đạt giá trị nguyên
Ta có : 5 = 1.5 = (-1).(-5)
Bảng giá trị :
x-2 | 1 | 5 | -1 | -5 |
y-3 | 5 | 1 | -5 | -1 |
x | 3 | 7 | 1 | -3 |
y | 8 | 4 | -2 | 2 |
Vậy (x;y)=(3;8);(7;4);(1;-2);(-3;2)
Do x, y nguyên
Nên 1-x và y+1 cũng đạt giá trị nguyên
Ta có : 3=1.3=(-1).(-3)
Bảng giá trị :
1-x | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 0 | -2 | 2 | 4 |
y | 2 | 0 | -4 | -2 |
Vậy (x;y)=(0;2);(-2;0);(2;-4);(4;-2)
Bài 1 : Tìm các cặp số nguyên x , y sao cho x = 6y và | x | - | y | = 60
Bài 2 : Tìm các cặp số nguyên a, b sao cho a khác b và | a | + | b | <2
Bài 3 : Cho dãy số 1 ; -2 ; 3 ; -4 ; 5 ; -6 ; 7 ; -8 ; 9 ; -10 . Chọn ra 3 số rồi đặt dấu cộng , dấu trừ giữi các số ấy . Tính ra giá trị nhỏ nhất và lớn nhất của số đó
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
Bài 1: Tìm các cặp số nguyên x;y thỏa mãn 2xy+2x-3y+5=0
Bài 1: Tìm các cặp số nguyên x ,y biết: x > 0 ; y> 0 và /x/ + /y/ = 3
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
bài 1:
a) Tìm các cẶP số nguyên x; y thỏa mãn hệ thức: ( 2x - 1 ) (y + 4 ) = 11
b) Tìm các giá trị x;y nguyên thỏa mãn: xy = 3y - 5x = 9
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
a)(2x-1)(y+4)=11
Ta có:11=1.11=11.1=(-1).(-11)=(-11).(-1)
Do đó ta có bảng sau:
y+4 | -11 | -1 | 1 | 11 |
2x-1 | -1 | -11 | 11 | 1 |
2x | 0 | -10 | 12 | 2 |
x | 0 | -5 | 6 | 1 |
y | -15 | -5 | -3 | 7 |
Vậy các cặp (x;y) TM là:(0;-15)(-5;-5)(6;-3)(1;7)
Bài 9. Tìm các cặp số nguyên x và y sao cho x – y = xy – 1.
x-y=xy-1
<=> x-y-xy+1=0
<=> x(1-y) + (1-y)=0
<=> (x+1)(y-1)=0
x=-1 hoặc y=1
Vậy (x,y) = (-1, y thuộc Z )
hoặc (x,y)=( x thuộc Z , y=1)
Chúc bạn học tốt .
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)