Chứng minh rằng nếu a, b, c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
1) chứng minh rằng nếu a;b;c là các số ko âm và b là số trung bình cộng của a và c thì ta có \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{c}+\sqrt{a}}\)
Chứng minh rằng nếu a, b, c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!
Chứng minh rằng nếu a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ
câu hỏi của mình cũng giống bạn nha
Vì cả a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) cũng viết dc dưới dạng phân số nhé
chứng minh rằng nếu a, b, c và a', b', c' là độ dài các cạnh của 2 tam giác đồng dạng thì: \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\)
Do hai tam giác có độ dài 3 cạnh là a,b,c và a',b',c' nên ta có tỷ lệ sau
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\) \(\Rightarrow\hept{\begin{cases}a=k.a'\\b=k.b'\\c=k.c'\end{cases}}\)
Ta có : \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{ka'.a'}+\sqrt{kb'.b'}+\sqrt{kc'.c'}\)
\(=a'.\sqrt{k}+b'.\sqrt{k}+c'.\sqrt{k}=\sqrt{k}.\left(a'+b'+c'\right)\)
Ta lại có : \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k.\left(a'+b'+c'\right)\left(a'+b'+c'\right)}=\sqrt{k}.\left(a'+b'+c'\right)\)
Vậy ......
Chứng minh rằng nếu : a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ .
Chứng minh rằng nếu a, b, c là số dương thỏa mãn a+c=2b thì ta luôc có: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
Chứng minh rằng nếu \(a;b;c;\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ thì \(\sqrt{a};\sqrt{b};\sqrt{c}\) là các số hữu tỉ
Đặt x=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(\Rightarrow x-\sqrt{a}=\sqrt{b}+\sqrt{c}\)
\(\Rightarrow\left(x^2+a-b-c\right)-2x\sqrt{a}=2\sqrt{bc}\)
\(\Rightarrow\left(x^2+a-b-c\right)^2+4ax^2-4x\left(x^2+a-b-c\right)\sqrt{a}=4bc\)
\(\Rightarrow\sqrt{a}=\dfrac{\left[\left(x^2+a-b-c\right)+4ax^2-4bc\right]}{\left[4x\left(x^2+a-b-c\right)\right]}\)\(\in Q\)
Vậy \(\sqrt{a};\sqrt{b};\sqrt{c}\) là các số hữu tỷ
Chứng minh rằng nếu a,b,c là các số dương thỏa mãn a+c=2b thì ta luôn có:
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
Nếu \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\)
Chứng minh rằng : Với mọi số nguyên dương lẻ n , ta đều có : \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\)
\(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=a+b+c\)
\(\Leftrightarrow a+b+c+3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a}+\sqrt[3]{c}\right)=a+b+c\)
\(\Leftrightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a}+\sqrt[3]{c}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)
+Neu a+b =0 => \(\sqrt[n]{a}+\sqrt[n]{b}=0\)( n : le)=> \(VT=VP=\sqrt[n]{c}\)(dpcm)
Tuong tu cac TH
=> KL