Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 16:07

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

Minh Uyên
Xem chi tiết
Akai Haruma
16 tháng 5 2021 lúc 21:13

Lời giải:

Để pt có 2 nghiệm pb thì:

$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)

Khi đó:

$2x_1^3+(m+2)x_2^2=5$

$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$

$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$

\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)

\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)

\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)

Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.

taekook
Xem chi tiết
Yeutoanhoc
27 tháng 6 2021 lúc 17:52

pt. 2 mghiemej pb

`<=>Delta>0`

`<=>(m+2)^2-4(3m-6)>0`

`<=>m^2+4m+4-12m+24>0`

`<=>m^2-8m+28>0`

`<=>(m-4)^2+8>0` luôn đúng

Áp dụng vi-ét ta có:`x_1+x_2=m+2,x_1.x_2=-3m-6`

`đk:x_1,x_2>=0=>x_1+x_2,x_1.x_2>=0`

`=>m+2>=0,3m-6>=0`

`<=>m>=2`

`pt<=>x_1+x_2+2sqrt(x_1.x_2)=4`

`<=>m+2+2sqrt{3m-6}=4`

`<=>3m+6+6sqrt(3m-6)=12`

`<=>3m-6+6sqrt(3m-6)=0`

`<=>3m-6=0`

`<=>m=2(tmđk)`

Vậy m=2

Mai Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 21:58

a) Thay m=0 vào phương trình (1), ta được:

\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: Khi m=0 thì S={0;-2}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 7 2019 lúc 7:02

a, Cách 1. Đặt  1 y + 1 = u  ta được  3 x - 2 u = 1 5 x + 2 u = 3

Giải ra ta được x = 1 2 ; u = 1 4

Từ đó tìm được y = 3

Cách 2. Cộng vế với vế hai phương trình, ta được 8x = 4

Từ đó tìm được x = 1 2 và y = 3

b, Vì x1x2 = -m2 - 1 < 0 "m nên phương trình đã cho luôn có hai nghiệm phân biệt và trái dấu.

Cách 1. Giả sử   x 1 < 0 <  x 2

Từ giả thiết thu được –  x 1 + x 2 =  2 2

Biến đổi thành  x 1 + x 2 2 - 4 x 1 x 2 = 8

Áp dụng định lý Vi-ét, tìm được m = 1 hoặc m =  - 3 5

Cách 2. Bình phương hai vế của giả thiết và biến đổi về dạng

x 1 + x 2 2 - 2 x 1 x 2 + 2 x 1 x 2 = 8

=>  m - 1 2 + 4 m 2 + 1 = 8

Do  x 1 x 2 = - x 1 x 2

Áp dụng hệ thức Vi-ét, ta cũng tìm được m = 1 hoặc m =  - 3 5

Nguyễn Dino
Xem chi tiết
@DanHee
6 tháng 6 2023 lúc 21:23

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 14:51

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2018 lúc 5:17

Đáp án B

Trang Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 21:00

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 9:42

a: Khi m=-8 thì (1) sẽ là x^2+6x=0

=>x=0; x=-6