cho tam giác abc kẻ ah vuông góc với bc tại h chứng minh rằng ah^2=bh.ch
cho tam giác abc kẻ ah vuông góc với bc tại h chứng minh rằng ah^2=bh.ch
Chúc bạn học giỏi!
Chúc bạn học tốt!
Chúc bạn học nhanh!
Chúc bạn học siêu!
hệ thức lượng học ở lớp mấy z bạn . mik chưa học cái đó
Cho tam giác ABC, có AH vuông góc với BC tại H. Chứng minh rằng: a)AH<1/2(AB + AC); b) Kẻ BK vuông góc AC tại K, CL vuông góc với AB tại L. Chứng minh: AH + BK + CL < AB + BC + CA.
đang cần gấp
Cho tam giác ABC nhọn, kẻ đường cao AH (H thuộc cạnh BC). Tia phân giác của góc ABH cắt AH tại I. Qua A kẻ đường thẳng vuông góc với AB, cắt tia BI tại K. Kẻ KD vuông góc với BC (D thuộc BC). a) Chứng minh rằng: tam giác AKD cân. b) Chứng minh rằng: BK vuông gióc với AD . Từ đó suy ra I là trực tâm của tam giác ABD. c) Trên tia đối của tia HA lấy điểm E sao cho HE = HI. Chứng minh rằng AKDE là hình thang cân. d) Nếu biết rằng ADE 3ADK , tính số đo ABC.
các bạn giả hộ câu này giùm mình với mình gấp lắm
cho tam giác ABC vuông tại A có AB=6CM,BC=10cm; đường cao AH
a) chứng minh tam giác HBA
đồng dạng với tam giác ABC
b)chứng minh AH^2=BH.CH
c) kẻ HD vuông góc với AB(D thuộc AB) chứng minh AB.AD=BH.CH
d)kẻ HE vuông góc với AC(E thuộc AC) và đường trung tuyến AM của tam giác ABC.chứng minh AM vuông góc với DE
e)tính diện tích tam giác AHB
a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔACH\(\sim\)ΔBCA(g-g)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=CH\cdot CB\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:
\(CH\cdot10=8^2=64\)
hay CH=6,4(cm)
Ta có: CH+BH=BC(H nằm giữa B và C)
nên BH=BC-CH=10-6,4=3,6(cm)
Vậy: BH=3,6cm; CH=6,4cm
c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=BH\cdot CH\)(đpcm)
Cho tam giác ABC vuông tại A. Gọi BD là tia phân giác của góc B (D thuộc
AC). Kẻ DE vuông góc với BC (E thuộc BC)
a) Chứng minh rằng ∆ADB = ∆eDB
b) Chứng minh rằng BD là đường trung trực của đoạn thẳng AE.
c) Kẻ AH vuông góc với BC tại H (H thuộc BC). AH cắt BD tại I. Chứng minh tam
giác AID cân.
d) Chứng minh BD vuông góc với CA
e) Chứng minh ba đường thẳng BA, ED, CA đồng quy
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>AB=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)
Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)
Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)
\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
mà \(\widehat{DBC}=\widehat{ABD}\)
nên \(\widehat{ADI}=\widehat{AID}\)
=>ΔADI cân tại A
Cho tam giác ABC vuông tại A, phân giác BD . Kẻ DE vuông góc với BC.a) chứng minh rằng: tam giác ABD= tam giác EBD.b) kẻ AH vuông góc với BC,AH cắt BD tại I.Chứng minh rằng: AH song song với DE,tam giác AID cân
a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.
b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.
Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:
$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$
$$\Rightarrow AB = EB$$
Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:
$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$
Do đó, $AH = ED$, hay $AH$ song song với $DE$.
Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:
$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$
Mà $\angle ABC = 90^\circ + \angle BAC$, nên:
$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$
Tương tự, ta có:
$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$
Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.
Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔABD=ΔEBD
b: AH vuông góc BC
DE vuông góc BC
=>AH//DE
Cho tam giác ABC. Kẻ AH vuông góc với BC ( H nằm giữa B và C ) và có AH2=BH.HC. Chứng minh rằng tam giác ABC vuông tại A
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.