Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anhh Bằngg
Xem chi tiết
Anhh Bằngg
24 tháng 2 2022 lúc 21:13

giúp vs

 

uwerieieiei
Xem chi tiết
uwerieieiei
10 tháng 9 2021 lúc 21:33

các bạn giúp mik với!!!!

KH troll HAY
Xem chi tiết
Đã Ẩn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 17:33

a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔACH\(\sim\)ΔBCA(g-g)

\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC^2=CH\cdot CB\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:

\(CH\cdot10=8^2=64\)

hay CH=6,4(cm)

Ta có: CH+BH=BC(H nằm giữa B và C)

nên BH=BC-CH=10-6,4=3,6(cm)

Vậy: BH=3,6cm; CH=6,4cm

c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có

\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=BH\cdot CH\)(đpcm)

Anh Đỗ
Xem chi tiết

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>AB=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)

Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)

Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔADI cân tại A

 

Đỗ Thị Mèo
Xem chi tiết
Mai Trung Hải Phong
23 tháng 5 2023 lúc 20:58

a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.

b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.

Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:

$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$

$$\Rightarrow AB = EB$$

Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:

$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$

Do đó, $AH = ED$, hay $AH$ song song với $DE$.

Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:

$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$

Mà $\angle ABC = 90^\circ + \angle BAC$, nên:

$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$

Tương tự, ta có:

$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$

Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.

Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.

Nguyễn Lê Phước Thịnh
24 tháng 5 2023 lúc 8:10

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔABD=ΔEBD

b: AH vuông góc BC

DE vuông góc BC

=>AH//DE

Phạm Ninh Lam Ngọc
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
iNfinitylove
Xem chi tiết