Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Song Hoành
Xem chi tiết
Trần Thị Hà Giang
26 tháng 8 2018 lúc 15:31

Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

        \(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zy\right)=x^2+y^2+z^2\)

        \(\Rightarrow2\left(xy+yz+zx\right)=0\)

        \(\Rightarrow xy+yz+zx=0\)

        \(\Rightarrow\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0\)( Chia 2 vế cho xyz )

        \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

        \(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

Ta lại có : \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-\left(\frac{3}{x^2y}+\frac{3}{xy^2}\right)+\frac{1}{z^3}\)

               \(=\left(-\frac{1}{z}\right)^3-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}\)

                \(=-\frac{3}{xy}\cdot-\frac{1}{z}\)\(=\frac{3}{xyz}\)

                 \(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)         ( đpcm )

alibaba nguyễn
27 tháng 8 2018 lúc 10:09

\(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow xy+yz+zx=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Ta lại co:

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Doraemon
28 tháng 8 2018 lúc 14:26

Ta có:

\(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow xy+yz+zx=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Ta lại có:

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Thành Trương
8 tháng 3 2021 lúc 14:15

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

 

Nguyễn Thành Trương
8 tháng 3 2021 lúc 14:17

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:

$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$

$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$

$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$

Khi đó BĐT đã cho trở thành:

$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$

Mặt khác ta có:

$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$

Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$

Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$

Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

Hoàng Thế Hải
Xem chi tiết
Gái FA
1 tháng 9 2018 lúc 20:08

kick mk nha

Pham Van Hung
2 tháng 9 2018 lúc 8:15

   \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2\)

\(\Rightarrow2\left(xy+yz+xz\right)=0\)

\(\Rightarrow xy+yz+xz=0\Rightarrow\frac{xy+yz+xz}{xyz}=0\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) 

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\)

Chúc bạn học tốt.

hello7156
Xem chi tiết
vung nguyen thi
Xem chi tiết
Lê Bùi
4 tháng 12 2017 lúc 20:27

theo bđt cauchy schwarz ta có

\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2\sqrt{y^3z^2}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2\sqrt{z^3y^2}}=\dfrac{1}{zy}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}+\dfrac{\dfrac{1}{y^2}+\dfrac{1}{z^2}}{2}+\dfrac{\dfrac{1}{z^2}+\dfrac{1}{x^2}}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)\(\Rightarrow dpcm\)

Nguyễn Khánh Linh
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 23:19

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

Akai Haruma
21 tháng 5 2021 lúc 23:22

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

Akai Haruma
21 tháng 5 2021 lúc 23:23

Bài 3:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)

Do đó:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

Ta có đpcm.

Nguyễn Nam Phi
Xem chi tiết
Lê Thị Thanh Nga
Xem chi tiết
Nam Thanh Long
Xem chi tiết
hoàng thanh
12 tháng 5 2015 lúc 22:30

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh