Cho hình bình hành ABCD. Gọi H, G, tương ứng là trung điểm của AB, CD. AG
và CH lần lượt cắt BD tại E, F. Chứng minh rằng: DEEFFB→→→
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)
mà AB=CD(Hai cạnh đối của hình bình hành ABCD)
nên AE=CF=FD=EB
Xét tứ giác AECF có
AE//CF(AB//CD, E∈AB, F∈CD)
AE=CF(cmt)
Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AEFD có
AE//FD(AB//CD, E∈AB, F∈CD)
AE=FD(cmt)
Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)
mà H∈AF(gt)
và K∈CE(gt)
nên HF//KC và EK//AH
Xét ΔDKC có
F là trung điểm của CD(gt)
FH//DK(cmt)
Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)
⇒DH=KH(1)
Xét ΔABH có
E là trung điểm của AB(gt)
EK//BH(cmt)
Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)
⇒BK=KH(2)
Từ (1) và (2) suy ra DH=HK=KB(đpcm)
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Đường chéo BD cắt AF ở G và cắt CE ở H. Chứng minh rằng:
a) DG=GH=HB. b) Các tứ giác AECF, EGFH, AGCH là các hình bình hành
Cho hình bình hành ABCD (góc A nhọn) gọi E, F lần lượt là trung điểm của AB và CD đường thẳng AC cắt các đường thẳng DE, BF lần lượt tại M và N.
a) Chứng minh DEBF là hình bình hành.
b) AC cắt BD tại O chứng minh E, O, F thẳng hàng.
c) hình bình hành ABCD có điều kiện gì thì tứ giác DEBF là hình thoi.
d) chứng minh AM = MN = NC sau đó tính tỉ số diện tích của tứ giác MENF và tứ giác ABCD
a Xét tứ giác DEBF có
BE//DF
BE=FD
Do đó; DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường(1)
b: Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mõi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
=>E,O,F thẳng hàng
5. cho hình bình hành ABCD, có M là trung điểm của AD, N là trung điểm của BC. Chứng minh rằng BM=DN
6. Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB,CD.
a) Chứng minh rằng: Tứ giác DEBF là hình bình hành
b) DE cắt AC tại G, BF cắt AC tại H. Chứng minh: DE = EF = FB
7. Cho hình bình hành ABCD, kẻ AM vuông góc với BD tại H, kẻ CN vuông góc với BD tại k.
a) chứng minh rằng: tứ giác AMCN là hình bình hành
b) Gọi I là trung điểm của MN. Chứng minh rằng: ba điểm A,I,C thẳng hàng
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
Cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA
a,Chứng minh rằng EFGH là hình bình hành
b,Cho AC=8cm và BD=6cm .Hãy tính các cạnh của hình bình hành và chu vi của hình bình hành đó
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔBAC
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra EF//HG và EF=HG
Xét tứ giác EFGH có
EF//HG
EF=HG
Do đó: EFGH là hình bình hành
Bài 6: Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. a. Chứng minh EFGH là hình bình hành. b. Gọi I là trung điểm của BD, K là trung điểm của AC. Chứng minh: EIGK là hình bình hành. c. Gọi O là trung điểm IK. Chứng minh: E, G, O thẳng hàng.
a: Xét ΔABD có
E là trung điểm của BA
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
Cho hình bình hành ABCD có E ,F lần lượt là trung điểm của AB,CD.Đường chéo BD cắt CE tại I a)chứng minh rằng AEGF là hình bình hành . b)gọi K là giao điểm của AC và BD chứng minh ba điểm E,K,E thẳng hàng và CL=2EL
Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB, BD cắt AC tại O chứng minh rằng :
a, Tứ giác AECK là hình bình hành
b, ba điểm E,O,K thẳng hàng
a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)
Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)
\(\Rightarrow AK=CE\) và \(AK//CE\)
=> AECK là hình bình hành
b) Ta có: O là giao điểm 2 đường chéo AC và BD
=> O là trung điểm AC
=> O là trung điểm KE(AECK là hình bình hành)
=> E,O,K thẳng hàng
Cho hình bình hành ABCD có M, N lần lượt là trung điểm của AB, CD. AN và CM cắt BD lần lượt tại E và F
a) Chứng minh AMCN là hình bình hành.
b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF=FE=ED.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
b: Xét ΔDFC có
N là trung điểm của DC
NE//FC
=>E là trung điểm của DF
=>DE=EF
Xét ΔBAE có
M là trung điểm của BA
MF//AE
=>F là trung điểm của BE
=>BF=FE
=>BF=FE=ED