Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Ngọc Hiển
Xem chi tiết
Trân Vũ
Xem chi tiết
Lê Nguyên Hạo
27 tháng 7 2016 lúc 9:07

  Ta có: 
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 

Hoàng Đình Đại
Xem chi tiết
Incursion_03
19 tháng 1 2019 lúc 22:00

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

                                           \(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

                                           \(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

                                           \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

                          

                                           

Nguyen Hong Anh
Xem chi tiết
Trần Đức Thắng
28 tháng 9 2015 lúc 16:14

\(x^3+y^3+z^3+3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3+3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y+z\right)+z^3\)

\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+xz\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lyzimi
28 tháng 9 2015 lúc 16:19

Trần Đức Thắng sai rùi X^3+y^3+z^3+3xyz cơ mà có phải X^3+y^3+z^3-3xyz đâu mà làm vậy 

Võ Hồng Nhung
Xem chi tiết
Nguyễn Dương Tuấn Kiệt
Xem chi tiết
Minh Hiền
26 tháng 7 2015 lúc 13:04

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Đường Quỳnh Giang
3 tháng 9 2018 lúc 2:26

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Nguyễn Ngọc Thanh Thảo
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
HT.Phong (9A5)
12 tháng 8 2023 lúc 14:51

\(\left(3x+1\right)^2-\left(3x-1\right)^2\)

\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)

\(=2\cdot6x\)

\(=12x\)

_________

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

\(=2x\cdot2y\)

\(=4xy\)

HT.Phong (9A5)
12 tháng 8 2023 lúc 14:59

\(\left(x+y\right)^3+\left(x-y\right)^3\)

\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)

\(=2x\cdot\left(x^2+3y^2\right)\)

______

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)

không cần biết
Xem chi tiết
Hải Băng
11 tháng 1 2016 lúc 5:30

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\left(1\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

có tkế dừng lại ở (1) cũg đk

 

không cần biết
13 tháng 1 2016 lúc 16:11

cảm ơn bạn nhé

 

Trịnh Thu Thảo
Xem chi tiết
NGUYỄN THẾ HIỆP
20 tháng 2 2017 lúc 17:51

\(=\left(x^3+y^3\right)+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy+yz+zx\right)\)