Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Quỳnh Anh
Xem chi tiết
Nguyễn Huy Tú
14 tháng 7 2021 lúc 14:54

Đề sai rồi bạn nhé

Shiba Inu
14 tháng 7 2021 lúc 14:55

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 14:55

Sửa đề: x+y+z=10

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y+z=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{10}{10}=1\)

Do đó: x=2; y=3; z=5

Diệu LInh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2023 lúc 13:39

x và y tỉ lệ nghịch với 6 và 5

nên 6x=5y

=>x/5=y/6

y và z tỉ lệ nghịch với 4 và 3

nên 4y=3z

=>y/3=z/4

=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2

=>x=10; y=12; z=16

Phạm Thị Tâm Tâm
Xem chi tiết
Dich Duong Thien Ty
22 tháng 7 2015 lúc 10:13

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)

\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)

\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)

Giang Hương Nguyễn
9 tháng 8 2017 lúc 8:56

Đún đấyg

dinh cao
Xem chi tiết
giangta
6 tháng 1 2015 lúc 20:09

có :

x/2=y/3suy ra x/10=y/15    1

y/5=z/suy ra y/15=z/21       2

từ 1 và 2 suy ra x/10=y/15=z/21

áp dung tính chất dãy tỉ số bằng nhau ta có :

x/10=y/15=z/21=x+y+z/10+15+21=98/46=49/23

suy ra x/10=49/23

Truy kich 2.0
Xem chi tiết
Phùng Tuệ Minh
20 tháng 7 2019 lúc 10:09

Ta có: x(x+y+z)=(-5) (1)

y(x+y+z)=9 (2)

z(x+y+z)=5 (3)

\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)

+ Với x+y+z=3 thì:

Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)

Từ (2) và (4) \(\Rightarrow\) y=3

Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)

+ Với x+y+z=-3

Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)

Từ (2) và (5) \(\Rightarrow y=-3\)

Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)

Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)

Trần Tử Hàm
Xem chi tiết
mynameisbro
Xem chi tiết
Nguyễn Đức Trí
21 tháng 9 2023 lúc 4:57

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

Nguyễn Hoài Thương
Xem chi tiết

Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.

Cảm ơn các em đã đồng hành cùng Olm.                        

Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 21:11

Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)

nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)

Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)

nên \(\dfrac{y}{5}=\dfrac{z}{8}\)

hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

mà 2x-5y+2z=100

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)

Phía sau một cô gái
2 tháng 8 2021 lúc 21:12

Ta có:  \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)

Lại có:  \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\)   \(\left(2\right)\)

Kết hợp ( 1 ) và ( 2 ) ta có:     \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)

⇒  \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)

⇒  \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)

⇒  \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)

Trịnh Bảo Châu
28 tháng 10 2023 lúc 12:38

fvklfksokodzsưkfposkfposzokokozspkfposfkkkfff;oeajfirepjfirjiod

 

 

 

 

Daichi Nono
Xem chi tiết