Tính giá trị của biểu thức
B=(1/2^2-1).(1,3^2-1).....(1/98^2-1).(1/99^2-1)
tính giá trị biểu thức
B = 0 – 2 + 4 – 6 + 2020 – 2022
C = 1 – 2 – 3 – 4 + 5 – 6 –7 – 8 + 9 –10 –11 – 12 +…+ 197 – 198 –199 – 200
D =( – 11 – 13 – 15 – …– 99) + (10 + 12 + 14 +…+ 98)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
1 tính giá trị của biểu thức
B=-1+2-3+4-5+....-99+100
Tìm tất cả các số nguyên n thỏa mãn:5n+14 chia hết cho n+2
Tính giá trị của biểu thức: 1/99 - 1/99*98 - 1/98*97 - ... - 1/3*2 - 1/2*1
.
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt A = \(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
A = \(1-\frac{1}{99}\)
A = \(\frac{98}{99}\)
Thay A vào biểu thức trên, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
Tính giá trị của biểu thức sau:
1/1 * 2 + 1/2 * 3 + .................... + 1/98 * 99 + 1/99 * 100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
ĐẶT : A= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)\(\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
= \(1-\frac{1}{99}=\frac{98}{99}\)
Gọi tổng đó là S
TA có : S = \(\frac{1}{1.2}+\frac{1}{2.3}+......\frac{1}{98.99}+\frac{1}{99.100}\)
S = \(\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
Vậy S = \(\frac{4949}{9900}\)
tính giá trị biểu thức
B= ( 1+1/100) x ( 1+ 1/99) x......x( 1 + 1/3) x ( 1 + 1/2)=
mình cần gấp ạ . dấu ba chấm là số cân tìm nha
\(B=\left(1+\dfrac{1}{100}\right)\times\left(1+\dfrac{1}{99}\right)\times....\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101\times100\times....\times4\times3}{100\times99\times....\times3\times2}\)
\(B=\dfrac{101}{2}\)
\(\Rightarrow B=\left(\dfrac{100}{100}+\dfrac{1}{100}\right)\times\left(\dfrac{99}{99}+\dfrac{1}{99}\right)\times...\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101}{2}\)( triệt tiêu các mẫu, tử giống nhau)
Câu 13. Giá trị của biểu thức
B=- 1+ 2- 3+ 4- 5 ... -99 + 100
là:
A. 50. B. -50. C. 10. D. -1.
Tính giá trị của biểu thức:
A=(1/3+1,3^2+1/3^3+1/3^4).3^5+(1/3^5+1/3^6+1/3^7+1/3^8).3^9+...+(1/3^97+1/3^98+1/3^99+1/3^100).3^101
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000
Tính Giá Trị của biểu thức sau biết ;
S = 1 /1 . 2 . 3 . 4 + 1 / 2 . 3 . 4 . 5 +......................+ 1 / 98 . 99 . 100 . 101
Tính nhanh giá trị của biểu thức sau:A=2^100-2^99-2^98-...-2^2-2-1
A=2100-299-298-...-22-2-1
\(\Rightarrow\)2A=2101-2100-299-...-23-22-2
\(\Rightarrow\)2A+A=(2101-2100-299-...-23-22-2)+(2100-299-298-...-22-2-1)
\(\Rightarrow\)3A=2101+1
\(\Rightarrow\)A=\(\frac{2^{101}+1}{3}\)
Vậy A=\(\frac{2^{101}+1}{3}\).
Ta có : A = 2100 - 299 - 298 - ... - 22 - 2 - 1
=> 2A = 2101 - 2100 - 299 - ... - 23 - 22 - 2
Lấy A - 2A = (2100 - 299 - 298 - ... - 22 - 2 - 1) - (2101 - 2100 - 299 - ... - 23 - 22 - 2)
=> - A = 2100 + 2100 - 2101 - 1
=> - A = 2.2100 - 2101 - 1
=> - A = 2101 - 2101 - 1
=> - A = - 1
=> A = 1