Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oOo Min min oOo
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:07

\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)

\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)

\(\Rightarrow y^2\le\dfrac{16}{3}\)

\(\Rightarrow y^2=\left\{1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)

- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;2\right)\)

Edogawa Conan
7 tháng 9 2021 lúc 17:12

Ta có: 4x2-4xy+4y2=16 

      ⇔ (2x-y)2+3y2=16 (1)

Vì (2x-y)2≥0 ⇒ 3y2≤16

                    ⇔ \(y^2\le\dfrac{16}{3}\)

                    ⇔ y2={1;4} ⇔ y={1;2}     

- Với y=1 ⇔ (2x-1)2 = 13 (loại do x nguyên dương)

- Với y=2 ⇔ (2x-2)2 = 4 \(\Leftrightarrow\left[{}\begin{matrix}2x-2=2\\2x-2=-2\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(loại\right)\end{matrix}\right.\)          

Vậy (x;y)=(2;2)

LÊ XUÂN ĐÀN
Xem chi tiết
Văn Dũng Bùi
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)

\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)

\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)

Vì x,y nguyên nên ta có các trường hợp sau:

TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)

Các TH còn lại bạn tự làm nhé

Trần Tuấn Hoàng
2 tháng 3 2022 lúc 20:35

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)

\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)

\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)

-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)

 

ĐỖ THỊ ANH THƯ
Xem chi tiết
Trần Nam Phong
Xem chi tiết
Nguyễn Hải Anh
Xem chi tiết
Mai Trang Nguyễn
Xem chi tiết
Ba Ca Ma
Xem chi tiết
Arima Kousei
13 tháng 1 2019 lúc 11:57

Pt đã cho đưa về dạng

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

๖ۣۜØʑąωą кเşşッ
13 tháng 1 2019 lúc 12:38

(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0

<=> (2x+y+1)^2 + x^2 = 4

Mà 4 = 0 + 2^2 = 0 + (-2)^2

Xét các TH là ra 

Cassie Natalie Nicole
Xem chi tiết
i love bach duong
9 tháng 12 2017 lúc 10:31

mik lp6

nên k bít

xin lỗi ha

Đinh Đức Hùng
6 tháng 2 2018 lúc 17:04

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

Lăng
Xem chi tiết
Trần Minh Hoàng
9 tháng 1 2021 lúc 16:32

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

Trần Minh Hoàng
9 tháng 1 2021 lúc 16:41

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).