cho a+b+c=0.chung minh rang:a^3+b^3+c^3=3abc
Cho x,y la hai so thoa man:ax+cy=c,bx+cy=a,cx+ay=b.Chung minh rang:a3+b3+c3=3abc
gọi (x, y) là nghiệm của hệ, ta có:
{ ax+by = c
{ bx+cy = a
{ cx+ay = b
cộng 3 ptrình lại vế theo vế: (a+b+c)(x+y) = a+b+c
* a+b+c = 0
* nếu a+b+c # 0, từ trên ta có: x+y = 1 <=> y = 1-x ; thay vào 2 ptrình của hệ:
{ (a-b)x = c-b
{ (b-c)x = a-c
+ nếu a = b, từ ptrình đầu => c-b = 0 => b=c
+ nếu b=c , từ ptrình sau => a-c = 0 => a= c
tóm lại nếu có 2 trong 3 số bằng nhau => a = b = c
+ xét a # b ; b # c từ hệ trên ta có: x = (c-b)/(a-b) = (a-c)/(b-c)
=> (c-b)(b-c) = (a-b)(a-c) <=> -b²-c²+2bc = a²-ab-ac+bc <=> a²+b²+c² = ab+bc+ca
<=> 2a²+2b²+2c² - 2ab-2bc-2ca = 0
<=> (a-b)² + (b-c)² + (c-a)² = 0 <=> a = b = c
Tóm lại hệ đã cho có nghiệm khi và chỉ khi: a+b+c = 0 hoặc a = b = c
ta có hằng đẳng thức:
a³+b³+c³ - 3abc = (a+b+c)(a²+b²+c² - ab-bc-ca) (*)
từ điều kiện trên => a³+b³+c³ - 3abc = 0 => đpcm
~~~~~~~~~~~~~~~
(*) có thể chứng minh tường minh như sau:
a³+b³+c³ - 3abc = (a+b)³ - 3ab(a+b) + c³ - 3abc = (a+b)³+c³ -3ab(a+b+c) =
= (a+b+c)[(a+b)² - (a+b)c + c²] - 3ab(a+b+c)²
= (a+b+c)(a²+b²+2b - ac - bc + c² - 3ab)
= (a+b+c)(a²+b²+c² - ab-bc-ca)
~~~~~~~~~~~~~~~
Cảm ơn bạn KS nhé. Mik ngồi lm bài này mãi ko có ra
a+b+c=0.Chung minh a^3+b^3+c^3-3abc=0
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Vậy \(a^3+b^3+c^3=3abc\)
a^2 + b^2 + 1 >= ab + a + b. Cho a+b+c =0 chung minh a^3 + b^3 + c^3 = 3abc
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
Cho a+b+c=0, chung minh rằng a3+b3+c3=3abc
ta xét vế trái a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1)
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b)
thay vao(2) ta dc
=3abc
Có a+b+c=0 nên (a+b+c)^3=0
a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6ab=0
a^3+b^3+c^3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Mà a+b+c=0 nên a^3+b^3+c^3=3abc(đpcm)
choa+b+c=0
chung minh rang a^3+b^3+c^3=3abc
Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
ĐÚng với a+b+c=0
cho 3 so a,b,c khac 0 va (a+b+c)^2=a^2+b^2+c^2 . chung minh \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3abc\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)
\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
cho a3+b3+c3=3abc
Chung minh a=b=c
cho a+b+c=0, chung minh rằng a3+b3+c3=3abc
gợi ý: từ a+b+c=0 suy ra a+b=-c. lập phương hai vế a+b=-c với chú ý 3a2b+3ab2=3ab(a+b)
\(a+b+c=0\)
=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
1) Phân tích đa thức thành nhân tử: \(a^3+b^3+c^3-3abc\)
2) Cho a, b, c thỏa mãn a+b+c=0. Chứng minh \(a^3+b^3+c^3=3abc\).
3) Cho a, b, c ≠ 0 thỏa mãn \(a^3+b^3+c^3=3abc\). Chứng minh a=b=c.
1. \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
2. \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
3.Còn có a + b + c = 0 nữa mà bn.
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
+ \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow a=b=c\)