Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HOANG THI QUE ANH
Xem chi tiết
bỏ mặc tất cả
6 tháng 4 2016 lúc 22:29

gọi (x, y) là nghiệm của hệ, ta có: 
{ ax+by = c 
{ bx+cy = a 
{ cx+ay = b 
cộng 3 ptrình lại vế theo vế: (a+b+c)(x+y) = a+b+c 
* a+b+c = 0 
* nếu a+b+c # 0, từ trên ta có: x+y = 1 <=> y = 1-x ; thay vào 2 ptrình của hệ: 
{ (a-b)x = c-b 
{ (b-c)x = a-c 
+ nếu a = b, từ ptrình đầu => c-b = 0 => b=c 
+ nếu b=c , từ ptrình sau => a-c = 0 => a= c 
tóm lại nếu có 2 trong 3 số bằng nhau => a = b = c 
+ xét a # b ; b # c từ hệ trên ta có: x = (c-b)/(a-b) = (a-c)/(b-c) 
=> (c-b)(b-c) = (a-b)(a-c) <=> -b²-c²+2bc = a²-ab-ac+bc <=> a²+b²+c² = ab+bc+ca 
<=> 2a²+2b²+2c² - 2ab-2bc-2ca = 0 
<=> (a-b)² + (b-c)² + (c-a)² = 0 <=> a = b = c 

Tóm lại hệ đã cho có nghiệm khi và chỉ khi: a+b+c = 0 hoặc a = b = c 
ta có hằng đẳng thức: 
a³+b³+c³ - 3abc = (a+b+c)(a²+b²+c² - ab-bc-ca) (*) 
từ điều kiện trên => a³+b³+c³ - 3abc = 0 => đpcm 
~~~~~~~~~~~~~~~ 
(*) có thể chứng minh tường minh như sau: 
a³+b³+c³ - 3abc = (a+b)³ - 3ab(a+b) + c³ - 3abc = (a+b)³+c³ -3ab(a+b+c) = 
= (a+b+c)[(a+b)² - (a+b)c + c²] - 3ab(a+b+c)² 
= (a+b+c)(a²+b²+2b - ac - bc + c² - 3ab) 
= (a+b+c)(a²+b²+c² - ab-bc-ca) 
~~~~~~~~~~~~~~~

Nguyễn Hồng Hà
14 tháng 10 2021 lúc 23:20

Cảm ơn bạn KS nhé. Mik ngồi lm bài này mãi ko có ra

Khách vãng lai đã xóa
nguyenvukhoa
Xem chi tiết
alibaba nguyễn
19 tháng 11 2016 lúc 13:38

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Vậy \(a^3+b^3+c^3=3abc\)

Vũ Anh Quân
Xem chi tiết
Ánh Right
1 tháng 9 2017 lúc 15:09

thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :

a^3+b^3+c^3-3abc=0

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

luôn đúng do a+b+c=0

Chu Hà Anh
Xem chi tiết
Tiến Vỹ
30 tháng 8 2017 lúc 20:41

ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1) 
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b) 
thay vao(2) ta dc 
=3abc 

Nguyễn Bá Hoàng Minh
30 tháng 8 2017 lúc 20:42

Có a+b+c=0 nên (a+b+c)^3=0

a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6ab=0

a^3+b^3+c^3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Mà a+b+c=0 nên a^3+b^3+c^3=3abc(đpcm)

hung
Xem chi tiết
Thắng Nguyễn
17 tháng 7 2017 lúc 17:50

Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

ĐÚng với a+b+c=0

Thân Nhật Minh
Xem chi tiết
Tuấn Nguyễn
14 tháng 11 2018 lúc 16:40

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

Pham Van Hung
14 tháng 11 2018 lúc 11:44

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

ANH DINH
Xem chi tiết
phạm nga
Xem chi tiết
Nguyễn Thị Hồng Nhung
9 tháng 9 2017 lúc 10:48

\(a+b+c=0\)

=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)

=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)

=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

SuSu
Xem chi tiết
hgf
28 tháng 10 2018 lúc 8:58

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)