Biết f(x) chia x+1 dư 4 chia \(x^2+1\) dư 2x+3
Hỏi f(x) chia (x+1)\(\left(x^2+1\right)\) dư mấy
Cho đa thức f(x) khi chia x+1 dư 4, \(x^2+1\)dư 2x+3. Tìm dư khi chia f(x) cho \(\left(x+1\right).\left(x^2+1\right)\)
Đa thức f(x) khi chia cho x+1 dư 4 , khi chia cho \(x^2+1\) dư 2x+3. Tìm đa thức dư khi chia f(x) cho \(\left(x+1\right)\left(x^2+1\right)\)
Bạn vào đây xem thử
Tìm số dư của phép chia \(f\left(x\right):\left[\left(x-1\right)\left(x-3\right)\right]\) biết f(x) chia cho x-1 dư 4, chia cho x-3 dư 14.
f(x) =Q(x) .(x-1)(x-3) +r(x)
f(1) =4 => r(1) =1
f(3) =14 => r(3) =14
=> a +b=1
14=3a+b=2a+a+b=14=> 2a=13 => a =13/2; b =-11/2
r(x) =13/2 x -11/2
Cho đa thức f(x) chia cho x-1 dư 4; f(x) chia cho x+2 dư 1
Hỏi f(x) chia cho (x-1)(x+2) dư mấy
Nguồn nước sạch ngày càng vơi cạn đó cũng là một cuộc khủng hoảng toàn cầu đấy bạn ạ.
Chúng ta có thể nhịn đói được nhưng không thể nhịn khát được.Tôi khẳng định với bạn điều đó.
Nước sạch cũng giống như máu của chúng ta vậy.Mà con người phải có máu thì mới sống được. Khi mất nhiều máu chúng ta sẽ chết.
Không có nước sạch mọi sinh hoạt của con người sẽ bị ảnh hưởng nghiêm trọng.Không có nước sạch sẽ sinh ra nhiều vấn đề đáng lo ngại cho sự sống của con người.Lúc đó: bệnh tật nảy sinh, môi trường cũng bị ảnh hưởng trầm trọng.
Tình hình thiếu nước sạch hiện nay cũng là một vấn nạn toàn cầu đáng báo động.
Bạn sẽ ra sao khi máu của bạn từng ngày từng ngày bị mất đi, bị nhiễm độc?Điều gì sẽ xảy ra tiếp theo nữa tôi nghĩ bạn cũng đã nghĩ ra.
Nguồn nước sạch quan trọng thế đấy bạn ạ!
Vì thế chúng ta hãy bảo vệ chính dòng máu của mình.Hãy giữ gìn nguồn nước thật tinh khiết không chỉ cho thế hệ của chúng ta mà còn cho thế hệ mai sau.Hãy vì sự tồn tại của con người, vì hành tinh xanh của chúng ta mãi mãi xanh và tràn đầy sự sống bạn nhé.
Cho đa thức f(x) chia cho x-1 dư 4; f(x) chia cho x+2 dư 1
Hỏi f(x) chia cho (x-1)(x+2) dư mấy
Tìm đa thức F(x) biết F(x) chia x+2 dư 8, F(x) chia x-5 dư 26, F(x) chia \(\left(x+2\right)\left(x+5\right)\) được thương là 2x và còn dư
Chia $(x+2)(x+5)$ hay $(x+2)(x-5)$ vậy bạn?
Tìm đa thức F(x) biết F(x) chia x+2 dư 8, F(x) chia x-5 dư 26, F(x) chia \(\left(x+2\right)\left(x-5\right)\) được thương là 2x và còn dư
Lời giải:
Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$
Ta có:
$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$
Thay $x=-2$ vào $(*)$ thì:
$F(-2)=(-2)a+b=8(1)$
$F(5)=5a+b=26(2)$
Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$
Khi đó:
$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$
$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$
Đa thức f\(\left(x\right)\) chia cho \(x+1\) thì dư 4, chia cho \(x^2+1\) thì dư \(2x+3\).
Tìm dư khi f\(\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)
\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)
\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)
Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)
\(f\left(-1\right)=a-b+c=4\) (2)
Biến đổi biểu thức (1):
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)
\(\Rightarrow f\left(x\right)\) chia \(x^2+1\) dư \(bx+c-a\)
\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)
Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
Theo Bơdu, ta có:
\(f\left(x\right):\left(x+1\right)\) dư 4
\(\Rightarrow f\left(-1\right)=4\)
Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)
Gọi \(P\left(x\right)\) là đa thức thương. Ta có:
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)
Vì \(f\left(x\right):\left(x^2+1\right)\)dư \(2x+3\)
\(\Rightarrow bx+c-a=2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)
\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)
\(\Leftrightarrow a+c=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)
Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
Biết f(x) chia cho x-2 dư 7, chia cho \(\left(x^2+1\right)\) dư 3x+5. Tìm dư trong phép chia f(x) cho \(\left(x-2\right)\left(x^2+1\right)\)