C = \(\dfrac{3x-2y}{2x-3y}\), biết \(\dfrac{x}{y}=\dfrac{5}{6}\) và \(\dfrac{x}{y}\ne\dfrac{3}{2}\)
Tìm x,y biết :
6) 3x=4y và 2x + 3y = 7
7) \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\) và x-y+z=36
8) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\) và 3x-2y+2z = 24
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
a, \(\dfrac{x}{6}=\dfrac{y}{-3}\) và x - y = 27
b,
\(\dfrac{x}{8}=\dfrac{y}{1,5}\) và x - 4y = -0,2
c, \(\dfrac{x}{y}=\dfrac{11}{13}\) và 2x + 3y = 122
d, 3x - 2y = 42 và \(\dfrac{x}{y}=\dfrac{5}{-3}\)
e, 3x = 5y và y - x = -10,2
a: \(\dfrac{x}{6}=\dfrac{y}{-3}\)
mà x-y=27
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{-3}=\dfrac{x-y}{6-\left(-3\right)}=\dfrac{27}{9}=3\)
=>\(x=3\cdot6=18;y=-3\cdot3=-9\)
b: \(\dfrac{x}{8}=\dfrac{y}{1,5}\)
mà x-4y=-0,2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{1,5}=\dfrac{x-4y}{8-4\cdot1,5}=\dfrac{-0.2}{2}=-0.1\)
=>\(x=-0,1\cdot8=-0,8;y=-0,1\cdot1,5=-0,15\)
c: \(\dfrac{x}{y}=\dfrac{11}{13}\)
=>\(\dfrac{x}{11}=\dfrac{y}{13}\)
mà 2x+3y=122
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{2x+3y}{2\cdot11+3\cdot13}=\dfrac{122}{61}=2\)
=>\(x=2\cdot11=22;y=2\cdot13=26\)
d: \(\dfrac{x}{y}=\dfrac{5}{-3}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}\)
mà 3x-2y=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{3x-2y}{3\cdot5-2\cdot\left(-3\right)}=\dfrac{42}{21}=2\)
=>\(x=2\cdot5=10;y=2\cdot\left(-3\right)=-6\)
e: 3x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{3}\)
mà x-y=10,2(vì y-x=-10,2)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{10.2}{2}=5.1\)
=>\(x=5,1\cdot5=25,5;y=5,1\cdot3=15,3\)
1/ Tìm x,y biết:
a/ \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) và x+y=-21
b/ 7x = 3y và x-y=16
c/ \(\dfrac{x}{y}\) = \(\dfrac{5}{9}\) và 3x+2x=66
d/ \(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) và x-2y=16
e/ \(\dfrac{x}{5}\) = \(\dfrac{y}{2}\) và x × y = 1000
2/ Tìm x,y,z biết
\(\dfrac{x}{13}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{5}\) và x-y-z=6
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{13}-\frac{y}{7}-\frac{z}{5}=\frac{x-y-z}{13-7-5}=\frac{6}{1}=6$
$\Rightarrow x=13.6=78; y=7.6=42; z=5.6=30$
bài tìm x,y,z biết :a)\(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và x+y-z=69
b)\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)và 2x-3y+z=6
c)\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{6}\)và x+y=14
d)\(\dfrac{2}{3x}=\dfrac{1}{2y}=\dfrac{2}{z}\)và 3x+2y+z=1
a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và \(x+y-z=69\)
Theo đề bài, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)
\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))
\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6
Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)
Vì \(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)
\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)
\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)
Vậy x=60; y=72; z=63
a) \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)và \(2x-3y+z=6\)
Theo đề bài, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}\times\dfrac{1}{3}=\dfrac{y}{4}\times\dfrac{1}{3}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\)(1)
\(\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{3}\times\dfrac{1}{4}=\dfrac{z}{5}\times\dfrac{1}{4}\Rightarrow\dfrac{y}{12}=\dfrac{z}{20}\)(2)
Từ (1) và (2), ta có: \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Leftrightarrow\dfrac{x}{9}\Rightarrow\dfrac{2x}{18};\dfrac{y}{12}\Rightarrow\dfrac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2x}{18}=3\Rightarrow x=\dfrac{18\times3}{2}=27\\\dfrac{3y}{36}=3\Rightarrow y=\dfrac{36\times3}{3}=36\\\dfrac{z}{20}=3\Rightarrow z=20\times3=60\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
1, \(\dfrac{x}{3}=\dfrac{y}{2}\); \(\dfrac{x}{5}=\dfrac{x}{7}\) và x +2y = -112
2, 2x = 3y; 5y = 7z và 3x - 7y + 5z = 30
3, \(\dfrac{x}{y}=\dfrac{10}{9};\) \(\dfrac{y}{z}=\dfrac{3}{4}\) và x +2y - 3z = -48
Làm giúp, cần gấp
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
Lời giải:
1. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{2}=\frac{2y}{4}=\frac{x+2y}{3+4}=\frac{-112}{7}=-16$
$\Rightarrow x=-16.3=-48; y=-16.2=-32$
Đoạn $\frac{x}{5}=\frac{x}{7}$ là sao em? Em xem lại đề.
2.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}\Rightarrow \frac{x}{21}=\frac{y}{14}(1)$
$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}(2)$
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
Áp dụng tính chất dãy tỷ số bằng nhau:
$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$
$\Rightarrow x=2.21=42; y=2.14=28; z=2.10=20$
Tìm các số x,y,z biết rằng:
a) 3x = 2y : 7y = 5z và x-y+z=32
b)\(\dfrac{x}{3}=\dfrac{y}{4}\); \(\dfrac{y}{3}=\dfrac{z}{5}\) và 2x - 3y + z = 6
c)\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x + y + z = 49
d) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và 2x + 3y - z = 50
e)\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và xyz = 810
a,3x=2y;7y=5z
=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta co:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)
Các câu sau tương tự
b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6
Từ đề bài ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)
từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3
\(\Rightarrow\)x=3.9=27
y=3.12=36
z=3.20=60
Vậy.....
chúc bạn học tốt,nhớ tick cho mình nha
Tìm x,y,z biết:
a) 3x=2y, 7y=5z và x-y+z=32
b) \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) và x.y=24
c)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
d)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và x.y.z=810
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)