Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
20 tháng 8 2016 lúc 10:20

A B C E F M

Vì ME là phân giác của \(\widehat{AMB}\) nên \(\frac{EA}{EB}=\frac{MA}{MB}\)

MF là phân giác của \(\widehat{AMC}\) nên \(\frac{FA}{FB}=\frac{MA}{MC}\)

Mà \(MB=MC\) nên \(\frac{EA}{EB}=\frac{FA}{FC}\). Theo định lí Ta - lét đảo \(\Rightarrow EF\)// \(BC\)

\(\Rightarrow\widehat{FEM}=\widehat{EMB}\)

     \(\widehat{EFM}=\widehat{FMC}\)

Mà \(\widehat{FEM}=\widehat{EFM}\) ( Do \(\Delta MEF\) cân tại M )

\(\Rightarrow\widehat{EMB}=\widehat{FMC}\Rightarrow\frac{\widehat{AMB}}{2}=\frac{\widehat{AMC}}{2}\Rightarrow\widehat{AMB}=\widehat{AMC}=90\)

=> AM vuông góc với BC hay AM là đường cao .lại có AM là trung tuyến nên tam giác ABC cân tại A

Lê Nguyên Hạo
20 tháng 8 2016 lúc 10:25

A E B M F C

Lê Nguyên Hạo
20 tháng 8 2016 lúc 10:18

Vì ME là tia p/g của \(\widehat{AMB}=\frac{EA}{AB}=\frac{MA}{MB}\)

MF là tia phân giác \(\widehat{AMC}\Rightarrow\frac{FA}{FB}=\frac{MA}{MC}\)

Mà MB = MC nên \(\frac{EA}{EB}=\frac{FA}{FC}\) 

Áp dụng định lí Pi ta go có:

\(\widehat{FEM}=\widehat{EMB}\Rightarrow\widehat{EFM}=\widehat{FMC}\)

Mà: \(\widehat{EFM}=\widehat{FEM}\) (Do MEF cân tại A)

\(\Rightarrow\widehat{EMB}=\widehat{FMC}\Rightarrow\frac{\widehat{AMB}}{2}=\frac{\widehat{AMC}}{2}\Rightarrow\widehat{AMB}=\widehat{AMC}\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

=> AM vuông BC hay AM là đường cao, AM lại là trung tuyến

Vậy ABC cân 

Lê Phương Mai
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
17 tháng 2 2022 lúc 13:30

undefined

Lê Phương Mai
Xem chi tiết
Đỗ Tuệ Lâm
17 tháng 2 2022 lúc 13:12

áp dụng t/c đường phân giác vào tam giác AMB có :

\(\dfrac{ME}{AB}=\dfrac{AM}{MB}\left(1\right)\)

áp dụng t/c đường phân giác vào tam giác AMC có :

\(\dfrac{MF}{AC}=\dfrac{AM}{MC}\left(2\right)\)

mà AB = AC ; MB=MC 

từ (1) và (2) suy ra : ME= MF (đpcm)

☆Châuuu~~~(๑╹ω╹๑ )☆
17 tháng 2 2022 lúc 13:15

Ta có 

\(\widehat{AME}=\widehat{EMB}\left(vì.ME.là.p/giác.\widehat{AMB}\right)\) 

\(\widehat{AMF}=\widehat{FMC}\left(vì.MF.là.p/giác\widehat{AMC}\right)\) 

\(\Rightarrow\widehat{EMB}=\widehat{FMC}\) 

 

Xét \(\Delta EMB.và.\Delta FMC\) 

MB = MC ( vì AM là trung tuyến )

\(\widehat{B}=\widehat{C}\)

\(\widehat{EMB}=\widehat{FMC}\left(cmt\right)\) 

Vậy .........

=> ME = MF(2 cạnh tương ứng)

huan trinhthihuan.yd
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Lê Minh Tuấn
5 tháng 12 2017 lúc 19:55

hu hu giúp mik với, sáng mai nộp rùi

Kien Casi
Xem chi tiết
nguyenvanhoang
Xem chi tiết
Vũ Sonh Lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 9:30

Tham khảo:

undefined

Nguyễn Quỳnh Anh
Xem chi tiết
ST
7 tháng 7 2018 lúc 15:00

A B C E F M I

a, Xét t/g AMB và t/g AMC có:

AB=AC(gt)

BAM=CAM(gt)

AM chung

=>t/g AMB=t/g AMC (c.g.c)

b, Xét t/g BEM và t/g CMF có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (t/g AMB=t/g AMC)

góc EBM = góc FCM (gt)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>ME=MF (2 cạnh tương ứng)

c, BI // FC => góc IBM = góc FCM (so le trong)

Xét t/g BIM và t/g CFM có:

góc IBM = góc FCM (vừa chứng minh)

MB = MC (t/g AMB = t/g AMC)

BMI = CMF (đối đỉnh)

=>t/g BIM = t/g CFM (g.c.g)

=>BI = BF (2 cạnh tương ứng) 

Mà BE = CF (t/g BEM = t/g CFM)

=> BE = BI

d, Vì MI = MF (t/g BIM = t/g CFM), ME = MF (câu b)

=> MI = ME

Mà \(MI=\frac{IF}{2}\)

=> \(ME=\frac{IF}{2}\)