Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cindy
Xem chi tiết
Nhan Thanh
4 tháng 9 2021 lúc 18:15

Thay \(x=-2\) vào phương trình, ta có

\(a\left(-2\right)^2-2b\left(-2\right)+3=0\)

\(\Leftrightarrow4\left(a+b\right)=-3\)

\(\Leftrightarrow a+b=-\dfrac{3}{4}\) (1)

Thay \(x=1\) vào phương trình, ta có

\(a.1^2-2b.1+3=0\)

\(\Leftrightarrow a-2b=-3\) (2)

Trừ (2) cho (1) theo vế, ta được

\(-3b=-\dfrac{9}{4}\Rightarrow b=\dfrac{3}{4}\) \(\Rightarrow a=-\dfrac{3}{4}-\dfrac{3}{4}=-\dfrac{3}{2}\)

Vậy \(a=-\dfrac{3}{2}\) và \(b=\dfrac{3}{4}\)

hoàng thiên
Xem chi tiết
Akai Haruma
7 tháng 3 2020 lúc 15:17

Lời giải:
Để PT đã cho nhận nghiệm $x=-2; x=1$ thì:

\(\left\{\begin{matrix} a(-2)^2-2b(-2)+3=0\\ a.1^2-2b.1+3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4a+4b=-3\\ a-2b=-3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a=\frac{-3}{2}\\ b=\frac{3}{4}\end{matrix}\right.\)

Khách vãng lai đã xóa
....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 12:03

\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)

\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)

\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm

\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm

MH 307
Xem chi tiết
tấn phát
Xem chi tiết
༺💖Nguyễn Đăng Đức Kiệt...
20 tháng 5 2019 lúc 15:57

khó quá

Phùng Minh Quân
20 tháng 5 2019 lúc 18:59

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

Phùng Minh Quân
21 tháng 5 2019 lúc 9:56

nhầm r >_< sửa lại chỗ này nhé 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)< 0\\b\left(3-b\right)< 0\\c\left(3-c\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3a< a^2\\3b< b^2\\3c< c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)>3\left(a+b+c\right)-\left(a+b+c\right)=6>0\) :))

Le Tuan Anh
Xem chi tiết
Rin Huỳnh
27 tháng 12 2023 lúc 20:44

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

Kira
Xem chi tiết
Lưu Đức Mạnh
8 tháng 3 2016 lúc 20:27

bạn cho câu hỏi dễ thế

Kira
Xem chi tiết
Phương Sugar
Xem chi tiết