Theo đề, ta có hệ:
a*(-2)^2-2b*(-2)+3=0 và a-2b+3=0
=>4a+4b=-3 và a-2b=-3
=>a=-3/2; b=3/4
Theo đề, ta có hệ:
a*(-2)^2-2b*(-2)+3=0 và a-2b+3=0
=>4a+4b=-3 và a-2b=-3
=>a=-3/2; b=3/4
Tìm a và b biết rằng phương trình \(ax^2-2bx+3=0\) có tập nghiệm {-2;1}
Phương trình \(\sqrt{2-f\left(x\right)}=f\left(x\right)\) có tập nghiệm A = {1;2;3}. Phương trình \(\sqrt{2.g\left(x\right)-1}+\sqrt[3]{3.g\left(x\right)-2}=2.g\left(x\right)\) có tập nghiệm là B = {0;3;4;5} . Hỏi tập nghiệm của phương trình \(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)+1=f\left(x\right)+g\left(x\right)\)
có bao nhiêu phần tử?
A.1
B.4 C.6 D.7
Biết rằng tập hợp các giá trị của tham số m để phương trình : \({x^2} - 2x - \sqrt {x + m} = m\) có nghiệm duy nhất là \(\left\{ {\left. { - \frac{a}{b}} \right\} \cup ( - c;d)} \right.\), với a,b,c,d là các số tự nhiên và \(\frac{a}{b}\) là phân số tối giản. Giá trị biểu thức \(\begin{array}{l} S = a + 2b + 3c + 4d\\ \end{array}\) là ?
Cho phương trình \(4^x-2^{x+2}+m=0\). Tìm tập hợp tất cả giá trị của tham số \(m\) để phương trình đã cho có hai nghiệm phân biệt
Gọi x1, x2 là hai nghiệm của phương trình \(x^2-3x+m=0\)
x3, x4 là hai nghiệm của phương trình \(x^2-12x+n=0\). Biết rằng \(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}\) và n dương . Hỏi giá trị của m thuộc khoảng nào dưới đây
A( 6; 9) B (-4; -1) C(-1;3) D(3;6)
Tìm tham số m để bất phương trình sau có tập nghiệm là
R:\(x^2+\left(m-2\right)x+m+1>0\)
tìm các giá trị của p để : a) phương trình (p + 1)x - (x+2) =0 vô nghiệm ; b) phương trình p^2 x - p= 4x - 2 có vô số nghiệm
Cho phương trình \(7x^2+7x=\sqrt{\dfrac{4x+9}{28}}\) vs x > 0. Biết phương trình có nghiệm dạng \(x=\dfrac{a+\sqrt{b}}{c}\), trong đó a,b là số nguyên và c là số nguyên dương nhỏ hơn 20. Khi đó a + b + c =?
cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất