Chứng minh rằng :
D=\(\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6++...+\sqrt[3]{6}}}}< 2\)
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
Chứng minh rằng \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+\frac{2.1}{3}\sqrt{2.3}-\frac{4.1}{2}\sqrt{3.2}\)
\(=\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\)
\(=\sqrt{6}\left(\frac{9}{6}+\frac{4}{6}-\frac{12}{6}\right)=\sqrt{6}.\frac{1}{6}=\frac{\sqrt{6}}{6}\)
Vậy \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
a) So sánh: \(A=\sqrt[3]{3+\sqrt{3}}+\sqrt[3]{3-\sqrt{3}}\)và \(B=2\sqrt[3]{3}\)
b) Cho \(A=\sqrt{6+\sqrt{6+...+\sqrt{6}}};B=\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}\)
Chứng minh rằng: \(0< \frac{A-B}{A+B}< 1\)
CHứng minh rằng: C=\(\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< 3\)
\(C< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{9}}}}}\)
\(\Rightarrow C< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}\)
\(\Rightarrow C< \sqrt{6+\sqrt{9}}=\sqrt{9}=3\) (đpcm)
chứng minh
\(\dfrac{3}{2}\)\(\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}\)
rút gọn
D=\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}\)\(-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
a)=\(\dfrac{3\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}-\dfrac{4\sqrt{6}}{2}\)
\(=\dfrac{2\sqrt{6}}{3}-\dfrac{\sqrt{6}}{2} \)
=\(\dfrac{4\sqrt{6}}{6}-\dfrac{3\sqrt{6}}{6}=\dfrac{\sqrt[]{6}}{6}\)
b)\(\dfrac{D}{\sqrt{3}}=\dfrac{\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1}{\sqrt{3}+1-1}\)
\(\dfrac{D}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)
D=2
chứng minh :a) 11+6\(\sqrt{2}\)= (3+\(\sqrt{2}\))\(^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)=6
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)= -2
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)=-4
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
Chứng minh rằng:
a)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\) là số nguyên
b)\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Chứng minh rằng: \(\frac{1}{6}< \frac{3-\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}}{3-\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}}< \frac{5}{27}\)
Trong đó, biểu thức ở tử chứa n dấu căn, biểu thức ở mẫu chứa n-1 dấu căn.
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)