rút gọn phân số
2/1+3/2+4/3+......+2019/2018
Rút gọn \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2018}+\sqrt{2019}}{1+\sqrt{2018}+\sqrt{2019}}\)
Rút gọn:
\(\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
Rút gọn tổng: \(S=-C\overset{1}{2019}+1.2C\overset{2}{2019}-2.3C\overset{3}{2019}+...+2017.2018C\overset{2018}{2019}-2018.2019C\overset{2019}{2019}\) bằng:
A. 1
B.. 2019
C. 0
D. -2019
Một phân số có tử số nhỏ hơn mẫu số là 3 đơn vị. Sau khi rút gọn phân số đó, ta được phân số . Hãy tìm phân số 2018/2019 ban đầu.
Gọi tử là x
=>Mẫu là x+3
Theo đề, ta có: \(\dfrac{x}{x+3}=\dfrac{2018}{2019}\)
=>2019x=2018x+6054
=>x=6054
Phân số cần tìm là 6054/6057
Bài 1:Rút gọn phân số
a)\(\frac{-2019\cdot2018+1}{\left(-2017\right)\cdot\left(-2019\right)+2018}\)
b)\(\frac{6\cdot9-2\cdot7}{63\cdot3-119}\)
c)\(\frac{2929-101}{2\cdot1919+404}\)
d)\(\frac{2\cdot3+4\cdot6+14\cdot21}{3\cdot5+6\cdot10+21\cdot35}\)
d)\(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}=\frac{2.3+2.2.6+2.7.21}{3.5+3.2.10+3.7.35}=\frac{2.3+2.12+2.147}{3.5+3.20+3.245}=\frac{2\left(3+12+147\right)}{3\left(5+20+245\right)}\)
\(=\frac{2.162}{3.270}=\frac{54}{135}=\frac{2}{5}\)
\(a.\frac{-2019.2018+1}{\left(-2017\right).\left(-2019\right)+2018}\)
\(=\frac{2019.\left(-2018\right)+1}{2019.2017+2018}\)
\(=\frac{2019.\left(-2018\right)+1}{2019.2018-1}\)
\(=-\frac{2018}{2018}\)
\(=-1\)
c)\(\frac{2929-101}{2.1919+404}=\frac{29.101-101}{29.101+101.4}=\frac{101\left(29-1\right)}{101\left(29+4\right)}=\frac{28}{33}\)
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ
Rút gọn biểu thức E=\(1+2+3+...+2019 \over 2+3+4+...+2020\) được phân số tối giản là bao nhiêu?
sorry
E=1+2+3+...+2019 / 2+3+4+...+2020 nhé ^P^
Rút gọn biểu thức sau
(20182019+20182018+...+20182+2018)2017+1
\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)
\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)
\(\Rightarrow2018A-A=2018^{2020}-2018\)
\(\Rightarrow2017A=2018^{2020}-2018\)
\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)
\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)
\(\Rightarrow M=2018^{2020}-2018+1\)
\(\Rightarrow M=2018^{2020}-2017\)
Rút gọn tổng \(S=C\overset{1}{2019}-2C\overset{2}{2019}+...-2018C\overset{2018}{2019}+2019C\overset{2019}{2019}\) bằng:
A. 2019
B.1
C. -2019
D. 0