Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thăng Vũ
Xem chi tiết
Nguyễn Quốc Hào
Xem chi tiết
Huỳnh Quang Sang
29 tháng 3 2020 lúc 20:04

Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)

Khách vãng lai đã xóa
Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 0:23

Chọn D

Tuyết Trinh Huỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2023 lúc 9:30

Gọi tử là x

=>Mẫu là x+3

Theo đề, ta có: \(\dfrac{x}{x+3}=\dfrac{2018}{2019}\)

=>2019x=2018x+6054

=>x=6054

Phân số cần tìm là 6054/6057

Trình Nguyễn Quang Duy
Xem chi tiết

d)\(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}=\frac{2.3+2.2.6+2.7.21}{3.5+3.2.10+3.7.35}=\frac{2.3+2.12+2.147}{3.5+3.20+3.245}=\frac{2\left(3+12+147\right)}{3\left(5+20+245\right)}\)

\(=\frac{2.162}{3.270}=\frac{54}{135}=\frac{2}{5}\)

Khánh Ngọc
3 tháng 5 2019 lúc 15:43

\(a.\frac{-2019.2018+1}{\left(-2017\right).\left(-2019\right)+2018}\)

\(=\frac{2019.\left(-2018\right)+1}{2019.2017+2018}\)

\(=\frac{2019.\left(-2018\right)+1}{2019.2018-1}\)

\(=-\frac{2018}{2018}\)

\(=-1\)

c)\(\frac{2929-101}{2.1919+404}=\frac{29.101-101}{29.101+101.4}=\frac{101\left(29-1\right)}{101\left(29+4\right)}=\frac{28}{33}\)

Yêu các anh như ARMY yêu...
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Nguyễn Hương Giang
9 tháng 3 2020 lúc 9:42

sorry

E=1+2+3+...+2019 / 2+3+4+...+2020 nhé ^P^

Khách vãng lai đã xóa
BiBo MoMo
Xem chi tiết
Nguyễn Bá Hùng
15 tháng 10 2018 lúc 17:34

\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)

\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)

\(\Rightarrow2018A-A=2018^{2020}-2018\)

\(\Rightarrow2017A=2018^{2020}-2018\)

\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)

\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)

\(\Rightarrow M=2018^{2020}-2018+1\)

\(\Rightarrow M=2018^{2020}-2017\)

Quỳnh Anh
Xem chi tiết