Giải phương trình sau
\(x^3+3ax^2+3\left(a^2-bc\right)x+a^3+b^3+c^3-3abc=0\)
Giải phương trình: \(x^3+3ax^2+3\left(a^2-bc\right)x+a^3+b^3+c^3-3abc=0\)
<=> \(\left(x^3+3x^2a+3xa^2+a^3\right)-3bc\left(x+a\right)+b^3+c^3=0\)<=>\(\left(x+a\right)^3-3bc\left(x+a\right)+\left(b+c\right)^3-3bc\left(b+c\right)=0\)<=>
\(\left(x+a\right)^3+\left(b+c\right)^3-3bc\left(x+a+b+c\right)=0\)<=>
(x+a+b+c)[ (x+a)2 +(b+c)2 -(x+a)(b+c) -3bc]=0 <=> x+a+b+c=0 hoặc x2 + x(2a-b-c) + a2+ (b+c)2 -a(b+c)-3bc=0
<=> x= -a-b-c hoặc x2 + x(2a-b-c) + a2+ (b+c)2 -a(b+c)-3bc=0 (1)
\(\Delta=\left(2a-b-c\right)^2-4\left[a^2+\left(b+c\right)^2-a\left(b+c\right)-3bc\right]=\)\(4a^2+\left(b+c\right)^2-4a\left(b+c\right)-4a^2-4\left(b+c\right)^2+4a\left(b+c\right)\)\(+12bc=12bc-3\left(b+c\right)^2=-3\left(b-c\right)^2\le0\)
để (1) có nghiệm thì b-c=0 => \(\Delta=0\) => x = \(-\frac{2a-b-c}{2}=-a-b\)
kết luận
với b-c \(\ne0\) pt có 2 nghiệm x=-a-b-c
b-c=0 pt có 2 nghiệm x=-a-b-c và x=-a-b
Giải phương trình \(x^3+3ax^2=3\left(bc-a^2\right)x-\left(a^3+b^3+c^3-3abc\right)\)
Tìm x, y, z biết:
\(x^3+3ax^2+3.\left(a^2-bc\right)+a^3+b^3+c^3-3abc=0\)
+Giải phương trình : x^3 + 3ax^2 = 3(bc-a^2).x-(a^3+b^3+c^3-3abc)
giúp mình,mình sắp nộp bài rồi
Tìm x, biết x^3+3ax^2+3(a^2-bc)x+a^2+b^2+c^2-3abc=0
( a,b,c là các số đã cho)
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Giải phương trình sau
\(\left(a\right)x^3+4x^2+x-6=0\)
\(\left(b\right)x^3-3x^2+4=0\)
\(\left(c\right)x^3-4x^2+5x=0\)
a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)
<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)
<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)
Phương trình trên bạn tự bấm máy tính nha
<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
Đến đây tự làm đc rồi
Vậy x=1 hoặc -2 hoặc -3
b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)
<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x-2\right)^2=0\)
<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c)Câu c mik chưa làm đc
Đáp án câu C:
\(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)
\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)
\(=\left(x-2\right)^2+1\)
\(Mà\left(x-2\right)^2\ge0\)
\(Nên\left(x-2\right)^2+1\ge1\)
\(Khiđó:x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=0\)
a) \(x^3+4x^2+x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+2=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
Vậy: phương trình có tập nghiệm là: S = {1; -2; -3}
b) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy: phương trình có tập nghiệm là: S = {-1; 2}
- giải các bất phương trình sau:
a) (\(3x^2-7x+4\))(\(x^2+x+4\))\(>0\)
b) \(x^3-13x^2+42x-36>0\)
c) \(x\left(x+5\right)\le2\left(x^2+2\right)\)
a: =>(x-1)(3x-4)>0
=>x>4/3 hoặc x<1
b: =>x^3-3x^2-10x^2+30x+12x-36>0
=>(x-3)(x^2-10x+12)>0
Th1: x-3>0và x^2-10x+12>0
=>x>5+căn 13
TH2: x-3<0 và x^2-10x+12<0
=>x<3 và 5-căn 13<x<5+căn 13
=>3<x<5+căn 13
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)