Tìm x, y nguyên dương thoả mãn2^x+57=y^2
tìm x;y nguyên dương thoả mãn x\(^2\)y\(^2\)(y-x)=5xy\(^2\)-27
=>xy^2(xy-x^2-5)=-27
x,y là số nguyên dương thì \(x,y^2\inƯ\left(-27\right)\)
=>\(x,y^2\in\left\{1;3;9;27\right\}\)
y^2=1 thì y=1
y^2=9 thì y=3
Khi y=1 thì x*(x-x^2-5)=-27
=>Loại
Khi y=3 thì 9x(3x-x^2-5)=-27
=>x=1
Tìm x,y,z nguyên dương thoả (x^2+y^2)/x^2y^2 + 2/z^2 = 1
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}=1\)
Xét \(x\ge y\ge z\)
\(\Rightarrow1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{z^2}\le\frac{4}{z^2}\)
\(\Rightarrow z^2\le4\Rightarrow z\le2\)
\(\Rightarrow z=1;2\)
Làm tiếp sẽ ra
tìm x y nguyên dương biết : 2x + 57 = y^2
hình như bạn "OoO_TNT_OoO'' sai đề thì phải
Tìm tất cả các số nguyên dương \(x;y;z\) thoả mãn : \(3^x+2^y=1+2^z\)
Tìm số nguyên dương x,y,z thoả mãn: (x-y)^3+(y-z)^2+2015(x-z) = 2017^2019
Tìm x,y nguyên dương thoả mãn x^2+8y và y^2+8x là các số chính phương
Không mất tính tổng quát ta giả sử \(x\ge y\)
Ta có:
\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)
\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)
PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)
Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi
Tìm các số nguyên dương x , y thoả mãn
X^2 = 2x(x-y) + 2y-x+2
Tìm x,y,z là 3 số nguyên dương thoả mãn 2(y+z)=x(yz-1)
Tìm tất cả các bộ số nguyên dương (x;y;z) thoả mãn \(\dfrac{x}{y}=\dfrac{y+x}{y+z}\) và
(y + 2).(4xz + 6y - 3) là số chính phương.
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)