cho tam giác MNP vuông tại M ,dường cao MH ,có MP=4cm
a tính MN=MH
b tính sin N, tanP
Cho tam giác MNP vuông tại M có MN = 3cm, MP = 4cm, NP = 5cm. a) Tính các tỉ số lượng giác của MNP · ? b) Kẻ đường cao MH của tam giác MNP . Tính MH, NH?
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
Cho tam giác MNP vuông tại M vẽ đường cao MH cho MN =3cm , MP=4cm a) chứng minh tam giác HNM đồng dạng với tam giác MNP b)tính độ dài NP,MH,NH ? GIÚP MÌNH VỚI Ạ !
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
Cho tam giác MNP vuông tại M, đường cao AH, biết NH=4cm, HP=12cm. Tính MH, MN, MP.
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Cho tam giác MNP vuông tại M có MN=5cm MP=12cm kẻ đường cao MH(H thuộc NP)
a) chứng minh tam giác HNM Đồng dạng với tam giác MNP b)tính độ dài các đường thẳng NP MH c)trong MNP kẻ phân giác MD (D thuộc MN) Tam giác MDP kẻ phân giác DF(F thuộc MP) chứng minh EM/EN =DN/DP=FP/FM=1
bài 5 cho tam giác MNP vuông tại M có đường cao MH .Biết MN=10cm,MH=120/13cm.Tính độ dài các đoạn thẳng MP,NH và PH
bài 6 tam giác ABC vuông tại A ,đường cao AH ⊥ BC.Biết AB=6cm ,CH=6,4cm a, tính BH b, tính AC
6:
a: AB^2=BH*BC
=>BH(BH+6,4)=6^2
=>BH=3,6cm
b: AC=căn 6,4*10=8cm
Cho tam giác MNP cân tại M có M<90°,từ M kẻ MH vuông góc với NP(H thuộc NP)
a) chứng minh tam giác MNH = tam giác MPH
b) tính độ dài cạnh MN, biết MH = 4cm và NH = 3cm
c) kẻ ND vuông góc với MP tại D,PE vuông góc với MN tại E. Gọi I là giao điểm của ND và PE.chứng minh MI là phân giác của góc NMP
d) chứng minh 3 điểm M,I,H thẳng hàng
Ghi đầy đủ mà nó hiện lên có 1 khúc,khóc ẻ
Cho tam giác MNP vuông tại M, có MN=12cm, MP=16cm. Kẻ đường cao MH (H thuộc NP) a) Chứng minh: tam giác HNM= tg NMP b) tính độ dài các đoạn thẳng NP,MH Giúp với ạ
Xét tam giác HNM và tam giác NMP, có:
^N: chung
^NHM = ^ NMP = 90 độ
Vậy tam giác NHM đồng dạng tam giác NMP (g.g )
\(\Rightarrow\dfrac{NM}{NP}=\dfrac{MH}{MP}\) (1)
Áp dụng định lý pitago \(NP=\sqrt{12^2+16^2}=20cm\)
(1)\(\rightarrow\dfrac{12}{20}=\dfrac{MH}{16}\)
\(MH=\dfrac{12.16}{20}=9,6cm\)
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D
cho tam giác MNP vuông tại M phân giác ND đường cao MH
a)chứng minh tam giác MNP đồng dạng tam giác AMP
b) biết MN=6cm;NP=10cm tính MP;DP
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5