Rut gon bieu thuc
A=(x+1)\(\left(x^2+1\right)\left(x^4+1\right)...\left(x^{256}+1\right)+1\)
rut gon bieu thuc :
\(\left(x+1\right)^4-6\left(x+1\right)^2-\left(x^2-2\right).\left(x^2+2\right)\)
\(\left(x+1\right)^4-6\left(x+1\right)^2-\left(x^2-2\right)\left(x^2+2\right)\\ =x^4+4x^3+6x^2+4x+1-6x^2-12x-6-x^4+4\\ =4x^3-8x+5\)
cho bieu thuc A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri cua bieu thuc A tai x=7+4√3
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)
rut gon bieu thuc: \(\frac{\sqrt{\sqrt{\frac{x-1}{x+1}}+\sqrt{\frac{x+1}{x-1}}-2}\left(2x+\sqrt{x^2+1}\right)}{\sqrt{\left(x+1\right)^3}-\sqrt{\left(x-1\right)^2}}\)
cho bieu thuc A =\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
(x≥0;x≠1)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri bieu thuc A tai x=7+4√3
a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2
\)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:
A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)
cho bieu thuc A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
(x≥0;x≠1)
a.Tim x de bieu thuc A co nghia ? rut gon A ?
b. Tinh gia tri cua bieu thuc A tai x=7=4√3
\(\dfrac{\left(x+2\right)^2}{x}\times\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
rut gon bieu thuc tren
\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)
\(=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)-x^2-6x-4}{x}\)
\(=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-6x-4}{x}\)
\(=\dfrac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
rut gon bieu thuc
\(Q=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(P=12\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
Cho bieu thuc: \(Q=\left(\dfrac{x^2-2x}{2x^2+8}+\dfrac{2x^2}{x^2.\left(x-2\right)}\right).\left(\dfrac{x^2-x-2}{x^2}\right)\)
a, Rut gon bieu thuc Q
b, Tim gia tri ca x de Q co gia tri bang \(\dfrac{1}{4}\)
rut gon bieu thuc:
a,\(x\left[x-y\right]+y\left[x-y\right]\)
b,\(x^{n-1}\left[x+y\right]-y\left[x^{n-1}+y^{n-1}\right]\)