GIÚP MK VỚI:
TÌM x,y,z,t biết
\(x:y:z:t=2:3:4:5\)và \(x+y+z+t=-42\)
nhanh nha
GIÚP MK VỚI:
TÌM x,y,z,t biết
\(x:y:z:t=2:3:4:5\)và \(x+y+z+t=-42\)
nhanh nha
Theo đề bài ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)và \(x+y+z+t=-42\)
Áp dụng tính chất dãy tỉ số = nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=-\dfrac{42}{14}=-3\)
Từ
\(\dfrac{x}{2}=-3\Rightarrow x=-3\cdot2=-6\\ \\ \dfrac{y}{3}=-3\Rightarrow y=-3\cdot3=-9\\ \dfrac{z}{4}=-3\Rightarrow z=-3\cdot4=-12\\ \dfrac{t}{5}=-3\Rightarrow t=-3\cdot5=-15\)
Vậy....
ta có:
x:y:z:t = 2:3:4:5
=>x/2=y/3=z/4=t/5
áp dụng tính chất của dãy tỉ số bằng nhau; ta có:
x/2=y/3=z/4=t/5= (x+y+z+t)/(2+3+4+5) = -42/14= -3 (do x+y+z+t=-42)
=>x=-3.2=-6; y=-3.3=-9; z=-3.4=-12; t=-3.5=-15
vậy.....
Tìm x,y,z,t biết:
a) 3x - 2y = 0 và x-y=16
b) x:y:z:t = 2:3:4:5 và x+y+z+t = -42
c) 4/x = 6/y và x+y=5}
d) x/3 = y/2 = z/5 và x-y+z = -10,2
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
b, x : y : z : t = 2 : 3 : 4 : 5 => x/2 = y/3 = z/4 = t/5
Đặt : x/2 = y/3 = z/4 = t/5 = k => x = 2k ; y = 3k ; z = 4k ; t = 5k
x + y + z + t = -42 => 2k + 3k + 4k + 5k = -42 => 14k = -42 => k = -3
Với k = -3 => x = 2.(-3) = -6 ; y = 3.(-3) = -9 ; z = 4.(-3) = -12 ; t = 5.(-3) = -15
Vậy ...
d,Đặt : x/3 = y/2 = z/5 = k => x = 3k ; y = 2k ; z = 5k
x - y + z = -10,2 => 3k - 2k + 5k = -10,2 => 6k = -10,2 => k = -1,7
Với k = -1,7 => x = 3.(-1,7) = -5,1 ; y = 2 . (-1,7) = -3,4 ; z = 5.(-1,7) = -8,5
Vậy ....
tìm x,y,z,t (nếu có)từ các tỉ lệ thức sau
a)x:y:z:t=2:3:4:5 và x+y+z+t=-42
b)x/2=y/3;y/5=z/4 và x-y+z=-49
c) x/2=y/3;y/4=z/5 và x+y-z=10
a) x:y:z:t=2:3:4:5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính ... , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow x=-6;y=-9;z=-12;t=-15\)
b) c ) tương tự
x:y:z:t=2:3:4:5 và x+y+z+t= -42
Ta có:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow x=-6;y=-9;z=-12;z=-15\)
Tìm x,y,z,t từ tỉ lệ thức sau:
x:y:z:t=2:3:4:5 và x+y+z+t=-42
x:y:z:t=2:3:4:5
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=-3.2=-6\\\frac{y}{3}=-3\Rightarrow y=-3.3=-9\\\frac{z}{4}=-3\Rightarrow z=-3.4=-12\\\frac{t}{5}=-3\Rightarrow y=-3.5=-15\end{matrix}\right.\)
Vậy ....
Mik lm xong lâu r nhưng có ng gọi điện tán tí nên lâu xin lỗi nha
x:y:z:t=2:3:4:5 va x+y+z+t=-42
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=-\frac{42}{14}=-3\)
\(\Rightarrow\frac{x}{2}=-3\Rightarrow x=-3.2=-6\)
\(\frac{y}{3}=-3\Rightarrow y=-3.3=-9\)
\(\frac{z}{4}=-3\Rightarrow z=-3.4=-12\)
\(\frac{t}{5}=-3\Rightarrow t=-3.5=-15\)
Theo đề ta có: \(x:y:z:t=2:3:4:5\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\) và \(x+y+z+t=-42\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}+\frac{t}{5}=\frac{-42}{14}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=-3.2=-6\\\frac{y}{3}=-3\Rightarrow y=-3.3=-9\\\frac{z}{4}=-3\Rightarrow z=-3.4=-12\\\frac{t}{5}=-3\Rightarrow t=-3.5=-15\end{matrix}\right.\)
Vậy ..............
x:y:z:t=2:3:4:5 và x+y+z+t=-42
Ta có :
\(x:y:z:t=2:3:4:5\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\\\dfrac{t}{5}=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=-12\\z=-16\\t=-20\end{matrix}\right.\)
Vậy ..
Ta có: x:y:z:t=2:3:4:5\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\) = \(\dfrac{x+y+z+t}{2+3+4+5}\) = \(\dfrac{42}{14}=3\)
\(\Rightarrow x=2.3=6\)
\(\Rightarrow y=3.3=9\)
\(\Rightarrow z=4.3=12\)
\(\Rightarrow t=5.3=15\)
Vậy x=6 ; y = 9; z =12; t=15
Ta có:\(x:y:z:t=2:3:4:5\) và \(x+y+z+t=-42\)
⇔\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\) và \(x+y+z+t=-42\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\)
Do đó:
\(\dfrac{x}{2}=-3\Leftrightarrow x=-6\)
\(\dfrac{y}{3}=-3\Leftrightarrow y=-9\)
\(\dfrac{z}{4}=-3\Leftrightarrow z=-12\)
\(\dfrac{t}{5}=-3\Leftrightarrow t=-15\)
Vậy x=-6; y=-9; z=-12; t=-15
x:y:z = 2:3:4 và x^2+2y^2-Z^2 = 24
x:y:z:t = 2:3:4:5 và x+y+z+t = -42
GIÚP MK VỚI CÁC BẠN ƠI NGÀY MAI MK PHẢI NỘP RỒI CÁC BẠN SỚM CHO MÌNH KẾT QUẢ NHANH NHÉ
LOVE
a) x:y:z=2:3:4
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2+2y^2-z^2}{4+18-16}=\frac{24}{6}=4\) (Theo t/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{x^2}{4}=4\Rightarrow x=4\)
\(\frac{2y^2}{18}=4\Rightarrow y=6\)
\(\frac{z^2}{16}=4\Rightarrow z=8\)
Câu b) cũng tương tự vậy:
-Lập tỉ số theo đề.
-Áp dụng t/c DTSBN.
-Tìm x,y,z,t theo tỉ số.
câu 1 bạn bình giải
câu 2
ta có x:y:z:t=2:3:4:5 và x+y+z+t=-42
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\) và x+y+z+t=-42
áp dụng tính chất dãy tỉ số bằng nhau,ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=-\frac{42}{14}=-3\)
*\(\frac{x}{2}=-3=>x=-3.2=-6\)
*\(\frac{y}{3}=-3=>y=-3.3=-9\)
*\(\frac{z}{4}=-3=>z=-3.4=-12\)
*\(\frac{t}{5}=-3=>t=-3.5=-15\)
vậy \(x=-6;y=-9;z=-12;t=-15\)
Tìm x;y;z;t
a)x:y:z:t=2:3:4:7 và a+b+c+d=-42
b)x/2=y/3=z/4 và x+2y-3z=-20
c)x:y:z=5:3:4 và x+3y-2=-121
a) xlđ
b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)
Vậy ...
c) tt