Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Nguyễn Anh Thu
Xem chi tiết
Trần Diệu Linh
20 tháng 12 2018 lúc 20:51

Theo đề bài ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)\(x+y+z+t=-42\)

Áp dụng tính chất dãy tỉ số = nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=-\dfrac{42}{14}=-3\)

Từ

\(\dfrac{x}{2}=-3\Rightarrow x=-3\cdot2=-6\\ \\ \dfrac{y}{3}=-3\Rightarrow y=-3\cdot3=-9\\ \dfrac{z}{4}=-3\Rightarrow z=-3\cdot4=-12\\ \dfrac{t}{5}=-3\Rightarrow t=-3\cdot5=-15\)

Vậy....

nguyễn hà my
20 tháng 12 2018 lúc 20:52

ta có:

x:y:z:t = 2:3:4:5

=>x/2=y/3=z/4=t/5

áp dụng tính chất của dãy tỉ số bằng nhau; ta có:

x/2=y/3=z/4=t/5= (x+y+z+t)/(2+3+4+5) = -42/14= -3 (do x+y+z+t=-42)

=>x=-3.2=-6; y=-3.3=-9; z=-3.4=-12; t=-3.5=-15

vậy.....

nguyễn hà my
20 tháng 12 2018 lúc 20:52

hihixong rồi nek bnhihi

Vân Anh
Xem chi tiết
Trịnh Thành Công
6 tháng 8 2017 lúc 20:20

Dựa vào tỉ số bằng nhau ta đc:

a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

       Áp dụng t/c dãy tỉ số bằng nhau ta đc:

             \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)

       Các câu kia tg tự nha

I have a crazy idea
6 tháng 8 2017 lúc 20:32

c) 

\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5 

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)

\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)

\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)

Vậy...

Đức Phạm
6 tháng 8 2017 lúc 20:40

b, x : y : z : t = 2 : 3 : 4 : 5 => x/2 = y/3 = z/4 = t/5 

Đặt : x/2 = y/3 = z/4 = t/5 = k => x = 2k ; y = 3k ; z = 4k ; t = 5k

x + y + z + t = -42 => 2k + 3k + 4k + 5k = -42 => 14k = -42 => k = -3 

Với k = -3 => x = 2.(-3) = -6 ; y = 3.(-3) = -9 ; z = 4.(-3) = -12 ; t = 5.(-3) = -15 

Vậy ... 

d,Đặt :  x/3 = y/2 = z/5 = k => x = 3k ; y = 2k ; z = 5k 

x - y + z = -10,2 => 3k - 2k + 5k = -10,2 => 6k = -10,2 => k = -1,7 

Với k = -1,7 => x = 3.(-1,7) = -5,1 ; y = 2 . (-1,7) = -3,4 ; z = 5.(-1,7) = -8,5 

Vậy ....

hoc hoi
Xem chi tiết
Thanh Tùng DZ
20 tháng 12 2017 lúc 20:13

a) x:y:z:t=2:3:4:5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính ... , ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)

\(\Rightarrow x=-6;y=-9;z=-12;t=-15\)

b) c ) tương tự

Bùi Thùy Dung
Xem chi tiết
Nguyễn Châu Anh
6 tháng 12 2017 lúc 17:02

Ta có:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)

\(\Rightarrow x=-6;y=-9;z=-12;z=-15\)

:WFL:
Xem chi tiết
Quốc Đạt
29 tháng 5 2019 lúc 20:12

x:y:z:t=2:3:4:5

\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)

\(\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=-3.2=-6\\\frac{y}{3}=-3\Rightarrow y=-3.3=-9\\\frac{z}{4}=-3\Rightarrow z=-3.4=-12\\\frac{t}{5}=-3\Rightarrow y=-3.5=-15\end{matrix}\right.\)

Vậy ....

Vân Anh Tống
29 tháng 5 2019 lúc 21:03

Violympic toán 7

Vân Anh Tống
29 tháng 5 2019 lúc 21:04

Mik lm xong lâu r nhưng có ng gọi điện tán tí nên lâu xin lỗi nha

Nguyễn Việt Hoàng
22 tháng 2 2020 lúc 17:35

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=-\frac{42}{14}=-3\)

\(\Rightarrow\frac{x}{2}=-3\Rightarrow x=-3.2=-6\)

\(\frac{y}{3}=-3\Rightarrow y=-3.3=-9\)

\(\frac{z}{4}=-3\Rightarrow z=-3.4=-12\)

\(\frac{t}{5}=-3\Rightarrow t=-3.5=-15\)

Khách vãng lai đã xóa
Diệu Huyền
22 tháng 2 2020 lúc 17:36

Theo đề ta có: \(x:y:z:t=2:3:4:5\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)\(x+y+z+t=-42\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}+\frac{t}{5}=\frac{-42}{14}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=-3.2=-6\\\frac{y}{3}=-3\Rightarrow y=-3.3=-9\\\frac{z}{4}=-3\Rightarrow z=-3.4=-12\\\frac{t}{5}=-3\Rightarrow t=-3.5=-15\end{matrix}\right.\)

Vậy ..............

Khách vãng lai đã xóa
Bảo Anh Nguyễn
Xem chi tiết
Nguyễn Thanh Hằng
22 tháng 12 2017 lúc 19:35

Ta có :

\(x:y:z:t=2:3:4:5\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\\\dfrac{t}{5}=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=-12\\z=-16\\t=-20\end{matrix}\right.\)

Vậy ..

Trần Thị Thu Nga
22 tháng 12 2017 lúc 19:34

Ta có: x:y:z:t=2:3:4:5\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\) = \(\dfrac{x+y+z+t}{2+3+4+5}\) = \(\dfrac{42}{14}=3\)

\(\Rightarrow x=2.3=6\)

\(\Rightarrow y=3.3=9\)

\(\Rightarrow z=4.3=12\)

\(\Rightarrow t=5.3=15\)

Vậy x=6 ; y = 9; z =12; t=15

Song Thư
22 tháng 12 2017 lúc 19:38

Ta có:\(x:y:z:t=2:3:4:5\)\(x+y+z+t=-42\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}\)\(x+y+z+t=-42\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{5}=\dfrac{x+y+z+t}{2+3+4+5}=\dfrac{-42}{14}=-3\)

Do đó:

\(\dfrac{x}{2}=-3\Leftrightarrow x=-6\)

\(\dfrac{y}{3}=-3\Leftrightarrow y=-9\)

\(\dfrac{z}{4}=-3\Leftrightarrow z=-12\)

\(\dfrac{t}{5}=-3\Leftrightarrow t=-15\)

Vậy x=-6; y=-9; z=-12; t=-15

kimtaehyunbts
Xem chi tiết
Thái Bình Nguyễn
23 tháng 11 2017 lúc 13:45

 a)   x:y:z=2:3:4

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2+2y^2-z^2}{4+18-16}=\frac{24}{6}=4\)     (Theo t/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x^2}{4}=4\Rightarrow x=4\)

     \(\frac{2y^2}{18}=4\Rightarrow y=6\)

     \(\frac{z^2}{16}=4\Rightarrow z=8\)

 Câu b) cũng tương tự vậy:

-Lập tỉ số theo đề.

-Áp dụng t/c DTSBN.

-Tìm x,y,z,t theo tỉ số.

Tiến Vỹ
23 tháng 11 2017 lúc 14:16

câu 1 bạn bình giải

câu 2

ta có x:y:z:t=2:3:4:5 và x+y+z+t=-42

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\) và x+y+z+t=-42

áp dụng tính chất dãy tỉ số bằng nhau,ta có

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=-\frac{42}{14}=-3\)

*\(\frac{x}{2}=-3=>x=-3.2=-6\)

*\(\frac{y}{3}=-3=>y=-3.3=-9\)

*\(\frac{z}{4}=-3=>z=-3.4=-12\)

*\(\frac{t}{5}=-3=>t=-3.5=-15\)

vậy \(x=-6;y=-9;z=-12;t=-15\)

Xem chi tiết
Edogawa Conan
20 tháng 8 2019 lúc 20:26

a) xlđ

b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)

=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\)  =>   \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)

Vậy ...

c) tt