cho đa thức P(x) = x2016 - 2016 x2015 - 2017 x2014 -.....-2016 x2 - 2016 x +1
tính P(2016)
Một bạn nhờ mình đăng hộ ( phan thuy anh )
Tìm N(2017) biết đa thức N(x)=x2017−2018.x2016+2018.x2015−2018.x2014+........−2018.x2+2018.x−1
Cho 2 đa thức: P(x)=1+x+2x2+...+2015x2015
và Q(x) =x2015+x2014+...+x2+x+1
Tính đa thứcH(x) sao cho Q(x)=P(x)-H(x)
So sánh P(\(\dfrac{1}{2}\)) với 3
Ta có: \(Q\left(x\right)=P\left(x\right)-H\left(x\right)\)
\(\Leftrightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Leftrightarrow H\left(x\right)=1+x+2x^2+...+2015x^{2015}-x^{2015}-x^{2014}-...-x^2-x-1\)
\(\Leftrightarrow H\left(x\right)=2014x^{2015}+2013x^{2014}+2012x^{2013}+...+x^2\)
Cho đa thức :
f(x)=x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1
f(x)= x^2017 - 2016.x^2016 - 2016.x^2015 - ... - 2016x + 1
f(x)= x^2017 - (2017 - 1)x^2016 - (2017 - 1)x^2015 - ... - (2017 - 1)x +1
Với x=2017 ta có :
f(x)= x^2017 - (x - 1)x^2016 - (x-1)x^2015 - ... - (x - 1)x +1
f(x)= x^2017 - x^2017 +x^2016 - x^2016 +...+ x^2 - x^2 + x + 1
f(x)= x + 1
Thay x =2017 vào f(x) ta có :
f(2017) = 2017 +1 = 2018
Cho a, b, c, khác 0. Tính giá trị biểu thức :\(A=x^{2017}+y^{2017}+z^{2017}\)
biết x,y,z thỏa mãn:
\(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho đa thức: P(x)=x^2018 - 100.x^2017 + 100.x^2016 - ... + 100.x + 2016
Tính P(99)
\(^{P\left(x\right)=x^{2018}-100x^{2017}+100x^{2016}-...+100x+2016}\) \(^{P\left(99\right)=x^{2018}-\left(99+1\right)x^{2017}+\left(99+1\right)x^{2016}-...+\left(99+1\right)x+2016}\) \(^{P\left(99\right)=x^{2018}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...+x^2+x+2016}\) \(^{P\left(99\right)=x+2016=99+2016=2115}\)
Cho X2016 . f(x-2016) = (x-2017). f(x). Chứng minh đa thức f(x) có ít nhất 2 nghiệm
Với x = 0, ta có:
02016. f(0-2016) = (0 - 2017) . f(0)
=> 0. f(-2016) = - 2017. f(0)
=> 0 = - 2017. f(0) => f(0) = 0 (1)
Với x = 2017, ta có:
20172016 . f(2017 - 2016) = (2017 -2017) . f(2017)
=> 20172016 . f(1) = 0. f(2017)
=>20172016 . f(1) = 0 => f(1) = 0 (2)
(1), (2) => (đpcm)
tìm đa thức bậc 3 f(x) , biết f(2015)=2016, f(2016)=2017, f(2014)-f(2017)=3
Cho đa thức f(x) = (x+2016)x3 + (x+2016)x +2017 .
Biết f(13) = 14 . Tính f(-13)
đề bài cực kì có vấn đề nhé f(13)=14?Rõ ràng không phải
toán lớp 7 đấy không phải lớp 10 đâu ! Giups mình với nhé ! ![]()
ôi, nhìn đầu bài là chẳng mun nghĩ cho hại não, có đời nào f(13) =14?
bởi z các bn giỏi ít lên h24 hẳn đi
Cho : A = 2016 x 2016 x ... x 2016 ( A gồm 2015 thừa số )
B = 2017 x 2017 x .... x 2017 ( B gồm 2016 thừa số )