Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Vũ Nam
Xem chi tiết
Akai Haruma
6 tháng 1 2024 lúc 18:57

Lời giải:

$S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})$

$=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^{97}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(3+3^5+...+3^{97})$

$=40(3+3^5+...+3^{97})$

$=40.3(1+3^4+....+3^{96})$

$=120(1+3^4+...+3^{96})\vdots 120$

Nguyễn Ngọc My
Xem chi tiết
Bagel
3 tháng 1 2023 lúc 17:48

\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)

\(=1.120+3^5.120+...+3^{97}.120\)

\(=\left(1+3^5+...+3^{97}\right).120\)

\(\Rightarrow S⋮120\)

Vậy ........

Nguyên Thị Nami
Xem chi tiết
Hương Yangg
5 tháng 4 2016 lúc 19:48

a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả

le ha trang
Xem chi tiết
Thanh Hiền
Xem chi tiết
Minh Hiền
29 tháng 11 2015 lúc 12:55

\(S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)

\(=3.\left(1+3+9+27\right)+...+3^{97}.\left(1+3+9+27\right)\)

\(=3.40+...+3^{97}.40\)

\(=40.\left(3+...+3^{97}\right)\)

\(=5.8.\left(3+...+3^{97}\right)\text{chia hết cho 5}\)

=> S chia hết cho 5 =>đpcm.

Vương Thị Diễm Quỳnh
29 tháng 11 2015 lúc 12:50

S=3+3^2+3^3+....+3^100

S=(3+3^2+3^3+3^4)+....+(3^97+3^98+3^99+3^100)

S=1(3+3^2+3^3+3^4)+...+3^96.(3+3^2+3^3+3^4)

S=1.120+...+3^96.120

S=120(1+...+2^96)

S=5.24(1+...+2^96) chia hết cho 5

Phạm Gia Hưng
Xem chi tiết
An Hoà
8 tháng 12 2018 lúc 12:18

Ta có ;

S = 3 + 3 2 + + ........ + 3 99 + 3 100

    = ( 3 + 3 2 + 3 3 + 3 4 + 3 5) + .... + ( 3 96 + 3 97 + 3 98 + 3 99 + 3 100 )

    = 3 ( 1 + 3 + 3 2 + 3 3 + 3 4 ) + .... + 3 96 . ( 1 + 3 + 3 2 + 3 3 + 3 4 ) 

    = 3 . 121 + .... + 3 96 . 121

    = 121 . ( 3 + .... + 3 96 ) chia hết cho 121 ( Do 121 chia hết cho 121 )

Vậy S = 3 + 3 2 + + ........ + 3 99 + 3 100 chia hết cho 121

huynh dien do
Xem chi tiết
Huỳnh Rạng Đông
Xem chi tiết
Lê Quang
Xem chi tiết
Yeutoanhoc
11 tháng 5 2021 lúc 22:21

$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$ 
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$