a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả
a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả
bài 1 a) cho A = 1+3^2 +3^4+3^6+...+3^2004+3^2006
chứng minh A chia cho 13 dư 10
b)chứng tỏ rằng 2n+1 và 2n+3 (n thuộc N ) là hai số nguyên tố cùng nhau
bài 2 tính tổng S=1^2+2^2+3^2+...+100^2
Cho S= 1-3+32-33+...+398-399
a, Chứng minh rằng S là bội của -20
b, Tính S từ đó suy ra 3100chia cho 4 dư 1
Bài 1: Cho A = ( 5m2 - 8m2 - 9m2) . ( -n3 + 4n3)
Với giá trị nào của m và n thì A ≥ 0
Bài 2: Cho S = 1 - 3 + 32 - 33 + ... + 398 - 399
a) Chứng minh S là bội của -20
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1
Bài 3: Tìm số nguyên n sao cho:
n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Bài 4: Tìm số nguyên a, b biết (a,b) = 24 và a + b = -10
Toán lớp 6 nha, giải dùm mình, mình cảm ơn
chứng minh rằng:
a,20^15-1 chia hết cho 11.31.61
b,2^9+2^99 chia hết cho 100
c,2^70+3^70 chia hết cho 13
chứng minh rằng :
a) 7^6+7^5- 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 22^2
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 24^54 .54^24 . 2^10 chia hết cho 72^63
cho A= 2+2^2+2^3+.......+2^60
CTR: A chia hết cho 3 , A chia hết cho 7 , A chia hết cho 5
Tổng S = 1 2 . C 2018 1 .2 0 + 2 2 . C 2018 2 .2 1 + 3 2 . C 2018 3 .2 2 + ... + 2018 2 . C 2018 2018 .2 2017 = 2018.3 a . 2. b + 1 với a,b là các số nguyên dương và 2. b + 1 không chia hết cho 3. Tính a + b .
A. 2017
B. 4035
C. 4043
D. 2018
chứng minh rằng: S=5+52+53+...+52004 chia hết cho 6; 31;156
1. Cho p và p2 - 1 là số nguyên tố ( p > 3 ) . Chứng minh 8p2+1 là hợp số
2.a. Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2-q2 chia hết cho 24
b. Nếu a, a+ k , a + 2k ( a, k khác 0 ) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6
Cho A= 2+2^2+2^3+2^4+...+2^59+2^60. Chứng minh A chia hết cho 7