Chứng minh rằng: Tổng S =\(^{3^1+3^2+3^3+...+3^{100}}\)chia hết cho 120
Chứng minh rằng :
Tổng S = 3^1+3^2+3^3+...+3^100 chia hết cho 120
giúp mik vs, mai mik thi rồi
Cho tổng:S=3^1+3^2+3^3+.....+ 3^20.Chứng minh rằng:
a)S chia hết cho 12
b)S chia hết cho 120
c)S không chia hết cho 13
Cho tổng S=3+32+33+........+399+3100
Chứng minh rằng tổng S chia hết cho 121
Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9
Bài 1: Cho S= 3 + 3^2 +3^3 +...+3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1 + 2 + 2^2 + 2^3 +...+ 2^17 ) chia hết cho 9
S=3^1+3^2+3^3+......+3^2016
a,Thu gọn S
b,Chứng minh S chia hết cho 120
cho B=3+3^2+3^3+...+3^100.chứng minh rằng B chia hết cho 120
a, Tính tổng :
S= 1-3+3^2-3^3+3^4+.....+3^100
b, Chứng minh rằng :
a^3-13a chia hết cho 6