phan tich da thuc thanh nhan tu
x4 +y4 +64
phan tich da thuc thanh nhan tu x^3 - 64
\(x^3-64=x^3-4^3\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+4^2\right)\)
Ta có:\(x^3-64\)
\(=x^3-4^3\)
Áp dụng hằng đẳng thức:\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow x^3-4^3=\left(x-4\right)\left(x^2+4x+4^2\right)\)
phan tich da thuc thanh nhan tu (x-2)^3+64
( x-2 ) ^3 + 4^3
= hằng đẳng thức thứ 6 nha pạn
\(\left(x-2\right)^3+64\)
\(=\left(x-2\right)^3+4^3\)
\(=\left(x-2+4\right)\left[\left(x-2\right)^2-4\left(x-2\right)+4^2\right]\)
\(=\left(x+2\right)\left(x^2-4x+4-4x+8+16\right)\)
\(=\left(x+2\right)\left(x^2-8x+28\right)\)
Tham khảo nhé~
phan tich da thuc thanh nhan tu
a, x^4.y^4+64
phan tich da thuc thanh nhan tu:x^8+64
x8+64
=(x4)2+16x4+82-16x4
=(x4+8)2-(4x2)2
=(x4+8-4x2)(x4+8+4x2)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
6x2-5x-3xy+10x
phan tich da thuc thanh nhan tu
\(=6x^2+5x-3xy\)
\(=x\left(6x+5-3y\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
bai1:phan tich da thuc thanh nhan tu a)5x3y-10x2y2+5xy3 b)x32y-1-125 2y-1 c)x2-6x-4y2+9 d)x2-xy+2y-2x