cho các số thực a,b,c không âm .Chứng minh rằng :
\(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
Cho a,b,c là các số thực không âm bất kì, chứng minh rằng:
\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)
Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:
\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)
Khi đó bất đẳng thức cần chứng minh tương đương:
\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)
Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)
Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)
\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)
Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c là các số thực không âm thoả mãn: \(a+b+c=3\) . Chứng minh:
\(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3\ge-\frac{3}{4}\)
Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath
Chứng minh rằng
a) \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a, b > 0
b) \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)với a, b, c > 0
c) \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)với \(a,b,c\ge0\)
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)
Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)
\(< =>a^3+b^3\ge a^2b+ab^2\)
\(< =>a+b\ge b+a\left(đpcm\right)\)
Ko chắc lắm vì t ms lớp 6 :((
Cho các số thực dương a,b,c có abc=1 chứng minh rằng:
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
AD bđt AM-GM cho 3 số
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+C}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c}{a^3\left(b+c\right)}.\dfrac{\left(b+c\right)}{4bc}.\dfrac{1}{2b}}=\dfrac{3}{2a}\)
\(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{3}{2a}-\dfrac{3}{4b}-\dfrac{1}{4c}\)
thiết lập bđt tương tự r cộng lại \(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\left(\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}\right)\left(a+b+c\right)=\dfrac{1}{2}\left(a+b+c\right)\)
Cho các số thực không âm a,b,c thoả mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).\)Chứng minh rằng \(\frac{a+b+c}{3}\ge\sqrt[3]{2abc}.\)
Giúp mình với!
Bài 3 : (3đ)
1. Chứng minh rằng với hai số thực bất kì a,b ta luôn có : \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Dấu bằng xảy ra khi nào ?
2. Cho ba số thực a,b,c không âm sao cho \(a+b+c=1\)
Chứng minh : \(b+c\ge16abc\) . Dấu bằng xảy ra khi nào ?
Nhân tiện em cũng hỏi luôn là tại sao khi em đăng bài mặc dù em đã điền đủ lớp môn ; mạng không lag mà sao vẫn không thể đăng bài được . Em phải mất tận 2 lần ghi lại đề bài mới có thể đăng bài được.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
Cho các số thực không âm a,b,c thỏa mãn a+b+c=3. Chứng minh rằng
\(a^3+b^3+c^3+8\left(ab+bc+ac\right)\ge27\)
ĐỀ sai rồi, ngược lại mới đúng.
Mình hơi khó hiểu dòng thứ 4 bạn giải thích lại đc ko
Cho các số thực không âm a,b,c chứng minh rằng
(a+b+c)3\(\ge\) a3 +b3 +c3 +24abc