Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
22 tháng 2 2022 lúc 16:55

Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:

\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)

Khi đó bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)

Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)

\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)

Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Minh Anh
Xem chi tiết
Thắng Nguyễn
14 tháng 7 2017 lúc 21:54

Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
16 tháng 4 2020 lúc 21:34

*học ngu chỉ làm được câu b. lười quá nên làm tắt*

Biến đổi thành

4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0

xét 4(a3+b3)-(a+b)=(a+b)[4(a2-ab+b2)-(a+b)2]

                                =3(a+b)(a-b)2 >=0

tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)

=> đpcm

đẳng thức xảy ra khi a=b=c

Khách vãng lai đã xóa
dcv_new
29 tháng 4 2020 lúc 20:20

Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)

Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)

\(< =>a^3+b^3\ge a^2b+ab^2\)

\(< =>a+b\ge b+a\left(đpcm\right)\)

Ko chắc lắm vì t ms lớp 6 :((

Khách vãng lai đã xóa
Hoàng Anh Thắng
Xem chi tiết
Hoàng Anh Thắng
14 tháng 3 2022 lúc 22:02

chết đăng nhầm sogy nha

Yu gi Oh Magic
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 9:40

Đề bài sai với \(a=b=c=2\)

Ngô Bá Hùng
28 tháng 6 2021 lúc 9:43

đề đúng nhớ áp dụng AM-GM

Ngô Bá Hùng
28 tháng 6 2021 lúc 9:50

AD bđt AM-GM cho 3 số

\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+C}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c}{a^3\left(b+c\right)}.\dfrac{\left(b+c\right)}{4bc}.\dfrac{1}{2b}}=\dfrac{3}{2a}\)

\(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{3}{2a}-\dfrac{3}{4b}-\dfrac{1}{4c}\)

thiết lập bđt tương tự r cộng lại \(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\left(\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}\right)\left(a+b+c\right)=\dfrac{1}{2}\left(a+b+c\right)\)

Tiến Nguyễn Minh
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn thành Đạt
20 tháng 3 2023 lúc 20:46

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

Đanh Fuck Boy :))
Xem chi tiết
tth_new
20 tháng 2 2021 lúc 21:29

ĐỀ sai rồi, ngược lại mới đúng.

Khách vãng lai đã xóa
Đanh Fuck Boy :))
21 tháng 2 2021 lúc 19:39

Mình hơi khó hiểu dòng thứ 4 bạn giải thích lại đc ko

Khách vãng lai đã xóa
tran thi mai anh
Xem chi tiết