Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
doan vinh huy
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Quốc Uchiha
Xem chi tiết
Trịnh Thị Thúy Vân
9 tháng 9 2018 lúc 17:22

Với a, b, c là các số nguyên dương

=> a + b > 0 ; b + c > 0 ; c + a > 0

Áp dụng bất đẳng thức Cauchy cho hai số a + b và c không âm, ta có:

\(\left(a+b\right)+c\ge2\sqrt[]{\left(a+b\right)c}\)

\(\Rightarrow1\ge\dfrac{2\sqrt[]{\left(a+b\right)c}}{a+b+c}\)

\(\Rightarrow1\ge\dfrac{2\sqrt{c}\sqrt[]{\left(a+b\right)c}}{\sqrt[]{c}\left(a+b+c\right)}\)

\(\Rightarrow1\ge\dfrac{2c\sqrt[]{a+b}}{\sqrt[]{c}\left(a+b+c\right)}\)

\(\Rightarrow\sqrt[]{c}\left(a+b+c\right)\ge2c\sqrt[]{a+b}\)

\(\Rightarrow\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\) (1)

Chứng minh tương tự \(\Rightarrow\sqrt[]{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\) (2) ;\(\sqrt[]{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c}\) (3)

Cộng hai vế của (1), (2), (3), ta được:

\(\sqrt[]{\dfrac{a}{b+c}}+\sqrt[]{\dfrac{b}{a+c}}+\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a+c=b\\b+c=a\end{matrix}\right.\)

Kết hợp với điều kiện a, b, c là các số nguyên dương => Không thể xảy ra dấu " = "

=> ĐPCM

Quốc Uchiha
9 tháng 9 2018 lúc 16:19

a,b,c >0 nua nhe

nguyen ngoc phuong
Xem chi tiết
Trần Phạm Kiều Thi
15 tháng 11 2016 lúc 16:38

Moi hoc lop 6 a!

Nen chang tra loi dc dau!

Nguyen Thi Thu Hien
Xem chi tiết
Xoa Phan Ngọc
Xem chi tiết
Phung Khanh Ly
Xem chi tiết
Thanh Mai Minh Thư
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
Phạm Nguyễn Tất Đạt
17 tháng 3 2018 lúc 20:51

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)