cho a,b,c,d la cac so thuc thoa ma dang thuc a+b+c+d=0.chung minh rang:
\(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
Cho a,b,c thỏa mãn ab+ac+bc=a+b+c+abc ; 3+ab ≠ 2a+b; 3+bc ≠ 2b+c;3+ac ≠2c+a.
C/M: \(\dfrac{1}{3+ab-\left(2a+b\right)}+\dfrac{1}{3+bc-\left(2b+c\right)}+\dfrac{1}{3+ac-\left(2c+a\right)}=1\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
Cho a,b,c >0 ; a+b+c = 6abc . Chứng minh rằng : \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ac}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)≥2
cho \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2017\)
tìm max \(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b,c là độ dài 3 cạnh của tam giác.
a, CMR:\(ab\left(a+b-2c\right)+bc\left(b+c-2a\right)+ac\left(a+c-2b\right)\ge0\)
b, CMR: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{3a^3+7b^3}{2a+3b}+\dfrac{3b^3+7c^3}{2b+3c}+\dfrac{3c^3+7a^3}{2c+3a}\ge3\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
cho a,b,c là các số thực dương thay đổi bất kì
cm:
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(a+2b+c\right)^2}{2b^2+\left(c+a\right)^2}+\dfrac{\left(a+b+2c\right)^2}{2c^2+\left(a+b\right)^2}\le8\)