Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
meme
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 20:41

a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)

=>x=k; y=2k; z=3k

\(x^2+y^2+z^2=14\)

=>\(k^2+4k^2+9k^2=14\)

=>\(14k^2=14\)

=>\(k^2=1\)

=>k=1 hoặc k=-1

TH1: k=1

=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)

TH2: k=-1

=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)

b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)

=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)

=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

=>x=2k; y=3k; z=4k

\(x^2+2y^2-3z^2=-650\)

=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)

=>\(4k^2+18k^2-3\cdot16k^2=-650\)

=>\(-26\cdot k^2=-650\)

=>\(k^2=25\)

=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)

TH1: k=5

=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)

TH2: k=-5

=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)

YangJiNguyen
Xem chi tiết
Cathy Trang
Xem chi tiết
Trang
13 tháng 11 2016 lúc 10:19

theo bài ra ta có:

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)

=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2y^2}{18}=\frac{3z^2}{48}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)

=> x2= 100 => x=10

=> y2= 225 => y = 15

=> z2= 400 => z= 20

vậy x = 10, y= 15, z= 20

Nguyễn Thế Sơn
29 tháng 8 2021 lúc 11:25

Ummm.... Đề bài là -650 mà??

Khách vãng lai đã xóa
Cathy Trang
Xem chi tiết
Nguyễn Nam
9 tháng 11 2017 lúc 21:38

Ta có:

\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}=\dfrac{x}{\sqrt[3]{8}}=\dfrac{y}{\sqrt[3]{27}}=\dfrac{z}{\sqrt[3]{64}}=\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2+2y^2-3z^2=-650\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2}{2^2}=\dfrac{2y^2}{2.3^2}=\dfrac{3z^2}{3.4^2}=\dfrac{x^2+2y^2-3y^2}{4+18-48}=\dfrac{-650}{-26}=25\)

\(\dfrac{x}{2}=25\Rightarrow x=25.2=50\)

\(\dfrac{y}{3}=25\Rightarrow y=25.3=75\)

\(\dfrac{z}{4}=25\Rightarrow z=25.4=100\)

Vậy \(x=50;y=75;z=100\)

YangJiNguyen
Xem chi tiết
YangJiNguyen
Xem chi tiết
Hoàng Hà
Xem chi tiết
thám tử
8 tháng 10 2017 lúc 0:20

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64};x^2+2y^2+3z^2\)\(=-650\)

<=>\(\frac{x^3}{2^3}=\frac{y^3}{3^3}=\frac{z^3}{4^3}\)

<=>\(\frac{x^2}{2^2}=\frac{2y^2}{2.3^2}=\frac{3z^2}{3.4^2}\)

=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)

=>\(\hept{\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{4}=25\end{cases}}\)=>\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)

vậy\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)

Hỏa Ngọc Đan Lê
20 tháng 12 2018 lúc 18:27

sao tớ thấy nó cứ sai sai thế nào í...

Minnie_YM
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 0:02

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

Ta có: \(x^2-y^2+2z^2=108\)

\(\Leftrightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)

\(\Leftrightarrow4k^2-9k^2+2\cdot16k^2=108\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot2=4\\y=3k=3\cdot2=6\\z=4k=4\cdot2=8\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-2\right)=-4\\y=3k=3\cdot\left(-2\right)=-6\\z=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)

Nhi Nguyen Phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:21

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 22:01

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)