Cho a:b:c=b:c:a với a+b+c\(\ne\)0
Chứng minh:\(\left(6a+8b+666c\right)^{^{ }2014^{ }}=680^{2014}.a^{20}b^{2005}.c^{2015}\)
Cho a:b:c=b:c:a và a+b+c\(\ne\)0.Chứng minh:
(3a+8b+2007c)\(^{2017}\)=2018\(^{2017}\)a\(^3\)b\(10\)c\(2004\)
Ta có \(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=t\)
\(\Rightarrow\hept{\begin{cases}a=bt\\b=ct\\c=at\end{cases}}\Rightarrow\hept{\begin{cases}a=ct^2\\c=at\end{cases}}\Rightarrow a=at^3\Rightarrow t=1\)
Vậy thì a = b = c.
Khi đó: \(\left(3a+8b+2007c\right)^{2017}=\left(2018a\right)^{2017}=2018^{2017}.a^{2017}\)
\(2018^{2017}.a^3.b^{10}.c^{2004}=2018^{2017}.a^{2017}\)
Vậy nên ta có \(\left(3a+8b+2007c\right)^{2017}=2018^{2017}.a^3.b^{10}.c^{2004}\)
Cho a:b:c=b:c:a và a+b+c\(\ne\)0
Chứng minh rằng: \(\left(2a+70b+1945c\right)^{2018}\)=\(2017^{2018}\).\(b^{13}\).\(c^{1975}\)
Cho : \(a^{2014}+b^{2014}+c^{2014}=a^{1007}.b^{1007}+b^{1007}.c^{1007}+c^{1007}.a^{1007}\). Tính A=\(\left(a-b\right)^{2014}+\left(b-c\right)^{2015}+\left(a-c\right)^{2016}\)
Lời giải:
Đặt $(a^{1007}, b^{1007}, c^{1007})=(x,y,z)$
Khi đó, ĐKĐB tương đương với:
$x^2+y^2+z^2=xy+yz+xz$
$\Leftrightarrow 2x^2+2y^2+2z^2=2xy+2yz+2xz$
$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$
Ta thấy $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$
$\Rightarrow x=y=z$
$\Leftrightarrow a^{1007}=b^{1007}=c^{1007}$
$\Leftrightarrow a=b=c$
Khi đó:
$A=0^{2014}+0^{2015}+0^{2016}=0$
Cho: \(a^2+b^2+c^2-7a-8b-9c+25=0\)
Tính: D=\(\left(a-2\right)^{2014}+\left(b-3\right)^{2015}+\left(c-4\right)^{2016}\)
Cho 3 số thực a,b,c thỏa mãn điều kiện: \(a^2+b^2+c^2-7a-8b-9c+25=0\)
Tính giá trị biểu thức: \(D=\left(a-2\right)^{2014}+\left(b-3\right)^{2015}+\left(c-4\right)^{2016}\)
Cho tỉ lệ thức: a/b = c/d . chứng minh rằng: \(\frac{a^{2014}+c^{2014}}{b^{2014}+a^{2014}}=\frac{\left(a+c\right)^{2014}}{\left(b+d\right)^{2014}}\)
Bị lừa chỏng vó kìa. Bạn cho **** rồi chắc chắn không ai làm đâu. Để mik giúp bạn vậy
1.CMR :
Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) và a,b,c,d \(\ne\) 0 ; c \(\ne\) d thì \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Vì \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)
Mà \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}=\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) (2)
Từ (1);(2) => \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)
Cho a + b + c = 0; a,b,c \(\ne\) 0
Chứng minh đa thức \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)
Ta có: \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-2\left(\dfrac{c}{abc}+\dfrac{b}{abc}+\dfrac{a}{abc}\right)}\)
\(=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-2\cdot\dfrac{a+b+c}{abc}}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho 3 số a, b, c thỏa mãn : \(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}\)
Chứng minh \(4\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
Chứng minh:
Đặt \(\dfrac{a}{2013}=\dfrac{a}{2014}=\dfrac{a}{2015}=k\)
\(\Rightarrow a=2013k,b=2014k,c=2015k\)
Vế trái
\(4\left(2013k-2014k\right).\left(2015k-2016k\right)\)\(=4.-k.-k=4k^2\)
Vế phải
\(\left(2015k-2013k\right)^2\)\(=\left(2k\right)^2=4k^2\)
\(\Rightarrow\)4(a−b).(b−c)=(c−a)\(\Rightarrow\)đpcm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}=\dfrac{a-b}{2013-2014}=\dfrac{b-c}{2014-2015}=\dfrac{c-a}{2015-2013}\)\(\Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow\dfrac{a-b}{-1}.\dfrac{b-c}{-1}=\left(\dfrac{c-a}{2}\right)^2\)
\(\Rightarrow\dfrac{\left(a-b\right)\left(b-c\right)}{1}=\dfrac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
Chứng minh:
Đặt a2013=a2014=a2015=ka2013=a2014=a2015=k
⇒a=2013k,b=2014k,c=2015k⇒a=2013k,b=2014k,c=2015k
Vế trái
4(2013k−2014k).(2015k−2016k)4(2013k−2014k).(2015k−2016k)=4.−k.−k=4k2=4.−k.−k=4k2
Vế phải
(2015k−2013k)2(2015k−2013k)2=(2k)2=4k2=(2k)2=4k2
⇒⇒4(a−b).(b−c)=(c−a).(c-a) đpcm