Cho \(\Delta ABC\)vuông tại A.Tia phân giác của\(\widehat{B}\) cắt cạnh\(AC\)tại \(D\).Trên cạnh \(BC\)lấy điểm\(H\)sao cho\(BH=BA\).
Chứng minh\(DH\perp BC\)
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm H sao cho BH=BA. Chứng minh DH vuông góc BC
Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
=>\(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
=>DH\(\perp\)HB
=>DH\(\perp\)BC
Cho \(\Delta\)ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH=BA
a) Chứng minh \(\Delta\)ABD = \(\Delta\)HBD
b) Chứng minh DH \(\perp\)BC
c) Giả sử góc C=600. Tính số đo góc ADB
a) Hai tam giác ABD và HBD có :
+ Chung BD
+ Góc ABD = Góc HBD(gt)
+ BA = BH (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c
b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ
Hay HD vuông góc BC
c)
góc C = 60 độ
=> góc ABC = 30 độ
góc ABD = 30 độ / 2 = 15 độ (BD phân giác)
Vậy góc ADB = 90 độ - 15 độ = 75 độ
a) Hai tam giác ABD và HBD có :
+ Chung BD
+ Góc ABD = Góc HBD(gt)
+ BA = BH (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c.g.c
b) Vì tam giác ABD = tam giác HBD nên ta suy ra được góc BAD = góc BHD = 90 độ
Hay HD vuông góc BC
c) góc C = 60 độ
=> góc ABC = 30 độ
góc ABD = 30 độ / 2 = 15 độ (BD phân giác)
Vậy góc ADB = 90 độ - 15 độ = 75 độ
Cho tam giác abc vuông tại a. Biết gopcs B= 60*
a. Tính số đo góc C của tam giác abc
b.Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH= BA. Chứng minh DH vuông góc BC
Cho tam giác ABC, góc A = 90 độ, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH = BA
a) Chứng minh DH vuông góc BC
b) Biết góc ADH = 110 độ, Tính góc ABD
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
Suy ra: \(\widehat{BAD}=\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
b: \(\widehat{ABH}=180^0-110^0=70^0\)
nên \(\widehat{ABD}=\dfrac{70^0}{2}=35^0\)
Cho ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH = BA.
a) Chứng minh ABD = HBD.
b) Chứng minh DH BC
c) Chứng minh AH BD
d) Giả sử = 600. Tính số đo
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
=>DH⊥BC
cho tam giác ABC có góc A = 90 độ. Tia phân giác của góc B cắt cạnh AC tại điểm D. Trên cạnh BC lấy điểm H sao cho BH = BA.
a, chứng minh DH vuông góc BC
b, biết góc ADH = 110 độ, tính góc ABD
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
Cho \(\Delta ABC\) vuông tại A. Tia phân giác của \(\widehat{B}\) cắt cạnh AC tại D. Trên cạnh BC lấy H sao cho BH = BA.
a) CM: \(DH\perp BC.\)
b) Biết \(\widehat{BDC}=110^0.\) Tính \(\widehat{ADH}\)
a/ Vì BD là tia phân giác của \(\widehat{ABC}\) nên \(\widehat{ABD}\) = \(\widehat{DBC}\)
Xét 2 tam giác ABD và HBD, có: \(\widehat{ABD}\)= \(\widehat{DBC}\) (cmt) và BH=BA (gt)
=>> 2 tam giác bằng nhau (cgv-gnk)
=>> \(\widehat{BHD}\) = \(\widehat{BAD}\) = 90 độ
==>> DH vuông góc với BC
b/ Ta có: \(\widehat{ADB}\)+\(\widehat{BDC}\) =180 độ ( vì 2 góc kề bù)
hay \(\widehat{ADB}\) + 110 = 180 => \(\widehat{ADB}\) = 70 độ
mà \(\widehat{BDH}\) = \(\widehat{ADB}\) ( vì 2 tam giác ABD= HBD)
=>> \(\widehat{BDH}\)= 70 độ
\(\widehat{ADH}\) = \(\widehat{ADB}\) + \(\widehat{BDH}\) = 70 + 70 = 140 độ
Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF=BA.
b)Chứng minh EF vuông góc với BC. c)Trên tia đối của tia EF lấy M sao cho EM=EC.Chứng minh B,A,M thẳng hàngo l m . v n
Cho Tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH=BA
a) Chứng minh tam giác ABD=tam giác HBD
b) chứng minh DH vuông góc BC
C) giả sử góc C=60 độ. Tính số đo góc BDC
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD