Cho tỉ lệ thức : 7a+3b/7a-3b = 7c+3d/7c-3d
CMR: a/b=c/d
cho tỉ lệ thức:
\(\dfrac{7a+3b}{7a-3b}=\dfrac{7c+3d}{7c-3d}\).CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)(giả sử các tỉ số đều có nghĩa)
=>49ac-21ad+21bc-9bd=49ac-21bc+21ad-9bd
=>-42ad=-42bc
=>ad=bc
=>a/b=c/d
1)Cho tỉ lệ thức : a\b=c\d
C\Minh : 3a+2c\3b+2d=5a-3c\5b-3d
Mấy bn làm nhanh giúp mik nha "___" Tks tr
2)Cho tỉ lệ thức:a\b=c\d
C\Minh:
a)7a+9b\7a-9b=7c+9d\7c-9d
b)ab\cd=a^2-b^2\c^2-d^2
Tks nhìu :)
Cho a/b=c/d. Chứng minh:
a: 5a+3b/5a-3b = 5c+3d/5c-3d
b: 7a^2 +3ab/11a^2-8b^2 = 7c^2+3cd/11c^2-8d^2
cho a/b=c/d chứng minh
a) a+b/c=c+b/d
b) 7a+4b/2a-3b= 7c+4d/2c-3d
Cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh:
a,\(\dfrac{ab}{cd}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
b,\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
c,\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)
Vậy...
b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)
Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(ad=bc\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
(theo tính chất dãy tỉ số bằng nhau)
=> (đpcm)
b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\) => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)
=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)
#Ayumu
bài 4 cmr nếu a/b=c/d thì
a. 5a+3b/5a-3b=5c+3d/5c-3d
b.7a^2+3ab/11a^2-8b^2/7c^2+3cd/11c^2-8b^2
chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
thì\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)
hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
a/b = c/d
CMR
a, 5a + 3b/5a- 3b = 5c+3d/5c-3d
b, 7a^2 + 3ab / 11a^2- 8b^2= 7c^2 + 3cd
c, a.c / b.d = a^2 + c^2/ b^2 + d^2
7a2-3b2 7c2-3d2
________ = ________ cho a/b=c/d . CHứng minh 2 phân số này bằng nhau
7a2 + 3b2 7c2+3d2