=>49ac-21ad+21bc-9bd=49ac-21bc+21ad-9bd
=>-42ad=-42bc
=>ad=bc
=>a/b=c/d
=>49ac-21ad+21bc-9bd=49ac-21bc+21ad-9bd
=>-42ad=-42bc
=>ad=bc
=>a/b=c/d
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
a, \(\dfrac{5a+3b}{7a-2b}=\dfrac{5c+3d}{7c-2d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
c, \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
( giả thiết các tỉ số trên đều có nghĩa )
Chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì
a, \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5a-3d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a, CMR : nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) ( gt các tỉ số đều có nghĩa )
b, tìm x,biết: \(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}+\dfrac{x-3}{2015}=\dfrac{x-4}{2014}\)
Bài 4: Chứng minh rằng:
Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì:
a) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
b)\(\dfrac{7a^2+3ab}{11b^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Các bạn giúp mềnh nha, mai mềnh đi học òy, rồi mềnh tick cho
Thank các bạn
Cho tỉ lệ thức \(\dfrac{a}{c}=\dfrac{c}{b}\) chứng minh rằng:
a)\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
b)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR : \(\dfrac{\left(a+b\right)^{2013}}{\left(c+d\right)^{2013}}\) = \(\dfrac{2a^{2013}-3b^{2013}}{2c^{2013}-3d^{2013}}\) ( Giả sử các tỉ số đều có nghĩa )
- 500 anh em nhảy vào giúp tao bài này đi ❔Tao cần gấp lắm ☹ Anh em nhảy vào đây giúp tao với ❤
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b, \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
c, \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
\(a,\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
\(b,\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)
Chứng minh \(\dfrac{a}{b} = \dfrac{c}{d}\) nếu biết
a, \(\dfrac {4a-3b}{4c-3d} = \dfrac {4a+3b}{4c+3d}\)
b, \(\dfrac {2a-3b}{2a+3b} = \dfrac {2c-3d}{2c+3d}\)