Tìm giá trị lớn nhất của :
P=\(x.\sqrt{6-x}+\left(5-x\right)\sqrt{x+1}\)
VỚI \(0\le x\le5\)
Tìm giá trị nhỏ nhất của
1)\(\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
2) \(x-\sqrt{x-2005}\)
3) \(\sqrt{x-2}+\sqrt{6-x}\)
Tìm giá trị lớn nhất của
4) \(x+\sqrt{2-x^2}\)
5) \(\frac{\sqrt{x-1}}{x}\left(x\ge1\right)\)
6) \(\left(a+x\right)\sqrt{a^2-x^2}\left(0\le x\le a\right)\)
MÌNH CẦN GẤP LẮM CÁC BẠN GIÚP MÌNH VỚI!!!
tìm GTLN:\(x\sqrt{6-x}+\left(5-x\right)\sqrt{x+1}\) với \(0\le x\le5\)
đặt \(A=x\sqrt{6-x}+\left(5-x\right)\sqrt{x+1}\)
\(A=\sqrt{x}\sqrt{x\left(6-x\right)}+\sqrt{5-x}\sqrt{\left(5-x\right)\left(x+1\right)}\)
Áp dụng BĐT bunyakovsky :
\(A^2\le\left(x+5-x\right)\left[x\left(6-x\right)+\left(5-x\right)\left(x+1\right)\right]\)
\(A^2\le5\left(-2x^2+10x+5\right)=5\left[-2\left(x-\frac{5}{2}\right)^2+\frac{35}{2}\right]\)
\(A^2\le\frac{5.35}{2}=\frac{175}{2}=87,5\Leftrightarrow A\le\sqrt{87,5}\)
dấu = xảy ra khi \(\left\{\begin{matrix}x=\frac{5}{2}\\\frac{1}{6-x}=\frac{1}{x+1}\end{matrix}\right.\)<=> x=2,5
vậy Amax=.....
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
TÌM GIÁ TRỊ LỚN NHẤT ( có thể dùng HĐT côsi)
\(y=\left|x\right|\sqrt{25-x^2}với-5\le x\le5\)
\(f\left(x\right)=\frac{x}{2}+\sqrt{1-x-2x^2}\)
\(E=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
TÍNH
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+....+\sqrt{1+\frac{1}{2012^2}+\frac{1}{2013^2}}\)
NX \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)
\(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\frac{a^4+2a^3+2a^2+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)=\(\left[\frac{a^2+a+1}{a\left(a+1\right)}\right]^2\)suy ra A=\(\frac{a^2+a+1}{a\left(a+1\right)}\)
=\(\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
ap dung vao bai ta co =\(\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)
=\(2011+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)= \(2011+\frac{1}{2}-\frac{1}{2013}=2011,499503\)
a) Tìm giá trị lớn nhất P = \(x\sqrt{6-x}+\left(5-x\right)\sqrt{x+1}\)với \(0\le x\le5\)
b) Cho a,b,c,d là các số nguyên thỏa mãn \(a^2=b^2+c^2+d^2\)
chứng minh a..b.c.d + 2015 viết được dưới dạng hiệu của 2 số chính phương
TÌM GIÁ TRỊ LỚN NHẤT (có thể dùng BĐT côsi)
\(y=\left|x\right|\sqrt{25-x^2}Với-5\le x\le5\)
\(f\left(x\right)=\frac{x}{2}+\sqrt{1-x-2x^2}\)
\(E=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
TÍNH
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\sqrt{1+\frac{1}{4^2}+\frac{1}{5^2}}+...+\sqrt{1+\frac{1}{2012^2}+\frac{1}{2013^2}}\)
GIÚP EM ĐI Ạ, MAI EM PHẢI KIỂM TRA RỒI
Cho \(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right).\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
a) Rút gọn biểu thức P
b) CMR: Biểu thức P chỉ nhận đúng một giá trị nguyên với \(0\le x,x\ne1\)
c) Tính giá trị của P khi x là số tự nhiên thỏa mãn \(\dfrac{\left(x+3\right)\left(x+4\right)}{3x}\in N\)
a, ĐK: \(x\ge0;x\ne1\)
\(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right).\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
\(=\left[\dfrac{x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\dfrac{\sqrt{x}+5-6}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}-1}{\sqrt{x}+5}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{-1;1\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
Vậy ta có điều phải chứng minh.
a: Ta có: \(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right)\cdot\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)
\(=\dfrac{x-1+2\sqrt{x}-2+3\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+5-6}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+5}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
Bài 1 : cho biểu thức
\(p=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\) với x lớn hơn hoặc bằng 0 ; x # 1
1) rút gọ P
2 tìm x để P = \(\dfrac{7}{4}\)
tìm giá trị nhỏ nhất của p
1, Với \(x\ge0,x\ne1\) ta có :
\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2, Ta có \(P=\dfrac{7}{4}\)
\(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\left(tm\right)\)
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)
\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)
\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9(nhận)
Vậy: Để \(P=\dfrac{7}{4}\) thì x=9