Cho F(x)=\(\sqrt{2-x}+\sqrt{1+x}\). Tìm x để F(x) đạt GTLN
1.Cho f(x)= 5x2-x+2. Tìm x để f(x) đạt GTNN và tính GTNN đó?
2. Cho f(x)= 2/3x2 -1/5x.Tìm x để f(x) đạt GTNN và tính GTNN đó?
3. Cho f(x)= -5x2+4x+7.Tìm x để f(x) đạt GTLN và tính GTLN đó?
4. Cho f(x)= -4/3x2+ 2/15x.Tìm x để f(x) đạt GTLN và tính GTLN đó?
1.Cho f(x)= 5x2-x+2. Tìm x để f(x) đạt GTNN và tính GTNN đó?
2. Cho f(x)= 2/3x2 -1/5x.Tìm x để f(x) đạt GTNN và tính GTNN đó?
3. Cho f(x)= -5x2+4x+7.Tìm x để f(x) đạt GTLN và tính GTLN đó?
4. Cho f(x)= -4/3x2+ 2/15x.Tìm x để f(x) đạt GTLN và tính GTLN đó?
1.Cho f(x)= 5x2-x+2. Tìm x để f(x) đạt GTNN và tính GTNN đó?
2. Cho f(x)= 2/3x2 -1/5x.Tìm x để f(x) đạt GTNN và tính GTNN đó?
3. Cho f(x)= -5x2+4x+7.Tìm x để f(x) đạt GTLN và tính GTLN đó?
4. Cho f(x)= -4/3x2+ 2/15x.Tìm x để f(x) đạt GTLN và tính GTLN đó?
help me voi
Cho biểu thức A =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Tìm x để A đạt GTLN, tìm GTLN đó
Để tìm thực dương `x` sao cho `P=`\(\dfrac{\sqrt{x}+1}{2-\sqrt{x}}\) đạt GTLN
P không có max bạn nhé. Tìm được min thôi.
Lời giải:
Có: \(P=\frac{\sqrt{x}+1}{2-\sqrt{x}}=\frac{\sqrt{x}+1}{2-\sqrt{x}}+1-1=\frac{3}{2-\sqrt{x}}-1\)
Do $\sqrt{x}\geq 0$ với mọi $x$
$\Rightarrow 2-\sqrt{x}\leq 2$
$\Rightarrow P\geq \frac{3}{2}-1=\frac{1}{2}$
Vậy $P_{\min}=\frac{1}{2}$. Giá trị này đạt tại $x=0$
Tìm x để f(x) đạt gtnn và tính gtnn đó
1, f(x)=3x2-2x-7
2, f(x)=5x2+7x
Tìm x để f(x) đạt gtln và tính gtln đó
1, f(x)=-5x2+9x-2
2, f(x)=-7x2+3x
Cho \(D=\dfrac{2\sqrt{x}+7}{\sqrt{x}-1}\)
Tìm số tự nhiên x để D đạt GTLN
\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)
Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)
Vậy \(D_{max}=-7\Leftrightarrow x=0\)
đạo hàm các hàm số sau:
1.y=\(\dfrac{\sqrt{x+1}}{x}\)
2.\(\dfrac{x}{1-x^2}\)
3. y=\(\dfrac{1}{x-\sqrt{x+1}}\)
cho f(x)=\(x^2+\dfrac{1}{x^2}\) tìm x để y'=0
y=\(\sqrt{1+\sqrt{1+x}}\) tìm x để f(x).f'(x)=\(\dfrac{1}{2\sqrt{2}}\)
1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)
2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)
3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)
4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)
\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)
5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)
\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))