\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)
Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)
Vậy \(D_{max}=-7\Leftrightarrow x=0\)
\(D=\dfrac{2\left(\sqrt{x}-1\right)+9}{\sqrt{x}-1}=2+\dfrac{9}{\sqrt{x}-1}\)
Vì \(\dfrac{9}{\sqrt{x}-1}\le\dfrac{9}{0-1}=-9\Leftrightarrow D\le2-9=-7\)
Vậy \(D_{max}=-7\Leftrightarrow x=0\)
(cần ý c thoi)
Cho các biểu thức sau:
A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) và B = \(\dfrac{x-3\sqrt{x}+4}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\) với \(x>0;x\ne4\)
b) Chứng minh: B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
c) Cho P = A : B. Tìm số tự nhiên x để biểu thức P đạt giá trị lớn nhất
cho biểu thức A= (\(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}\))
a. tìm đk xác định và rút gọn A
b. tìm tất cả giá trị của x để A>\(\dfrac{1}{2}\)
c. tìm tất cả các giá trị để B=\(\dfrac{7}{3}A\),đạt giá trị nguyên
d. tìm tất cả các giá trị để A nhỏ nhất.
8.A=\(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)-\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
a)Rút gọn A
b)Tìm tất cả các giá trị của x để B=\(\dfrac{7}{3}\)A đạt giá trị nguyên
1/ cho biểu thức A =\(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
a.tìm đk để A xác định
b. rút gọn A
c. tìm tất cả các giá trị để B=\(\dfrac{7}{3}A\),đạt giá trị nguyên
d. tìm tất cả các giá trị để A nhỏ nhất.
Bài 1: Cho A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) với \(x\ge0,x\ne4\)
a) Rút gọn và tìm các giá trị của x để A=2
b) Tìm x sao cho A<1
bài 2: Cho (P): \(y=x^2\) và (d): y=x+m-4. Tìm m để d cắt P tại 2 điểm phân biệt có hoành độ tương ứng là x1, x2 sao cho \(x1^2+x2^2=10\)
Bài 3: Cho nửa đường tròn tâm O đường kính AB. M là 1 điểm bất kỳ thuộc nửa đường tròn ( M khác A,B), gọi N là điểm trên cung AM ( N khác A, M và MN không song song AB). Đường thẳng AN cắt BM ở K, AM cắt BN ở I, KI cắt AB ở H.
a) Chứng minh KNIM nội tiếp và KI vuông góc AB.
b) CM KN.KA= KM.KB
c) Cm \(\widehat{MHN}=\widehat{NAM}+\widehat{NBM}\) và \(\widehat{MON}=\widehat{NHM}\)
d) Gọi giao của KH với nửa đường tròn là E, giả sử KH = 4cm, HI= 1cm. Tính KE?
cho biểu thức:
P=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)\(:\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right)\)
với x\(\ge\)0;x\(\ne\)1
1)Rút gọn P
2)Tìm x để P<\(\dfrac{1}{2}\)
3) tìm m để phương trình (\(\sqrt{x}+1\))P= m-x có nghiệm x
cho biểu thức
A = \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
1. Rút gọn biểu thức A
2. Tìm tất cả các số nguyên x để biểu thức A có giá trị là số nguyên
cho P= (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x-3}}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
a, Rút gọn P
b, Tìm x để P < \(\dfrac{1}{2}\)
c, Tìm GTNN của P
Cho A=\(\dfrac{\sqrt{x}+3}{x}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) với x>0 x khác 9
Cho P=A.B. Tìm x để phương trình \(Px+3\sqrt{x-5}=x-2\sqrt{x}+7\) có nghiệm