Bài 1: Cho A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) với \(x\ge0,x\ne4\)
a) Rút gọn và tìm các giá trị của x để A=2
b) Tìm x sao cho A<1
bài 2: Cho (P): \(y=x^2\) và (d): y=x+m-4. Tìm m để d cắt P tại 2 điểm phân biệt có hoành độ tương ứng là x1, x2 sao cho \(x1^2+x2^2=10\)
Bài 3: Cho nửa đường tròn tâm O đường kính AB. M là 1 điểm bất kỳ thuộc nửa đường tròn ( M khác A,B), gọi N là điểm trên cung AM ( N khác A, M và MN không song song AB). Đường thẳng AN cắt BM ở K, AM cắt BN ở I, KI cắt AB ở H.
a) Chứng minh KNIM nội tiếp và KI vuông góc AB.
b) CM KN.KA= KM.KB
c) Cm \(\widehat{MHN}=\widehat{NAM}+\widehat{NBM}\) và \(\widehat{MON}=\widehat{NHM}\)
d) Gọi giao của KH với nửa đường tròn là E, giả sử KH = 4cm, HI= 1cm. Tính KE?
Bài 1
a) A = \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\) (ĐK: x ≥ 0; x ≠ 4)
↔ A = \(\dfrac{x+2-\sqrt{x}+\sqrt{x}+2}{x-4}\)
↔ A = \(\dfrac{x+4}{x-4}\)
Để A = 2 ↔ \(\dfrac{x+4}{x-4}\) = 2 (ĐK: x ≠ 4)
→ \(x+4=2\left(x-4\right)\)
↔ \(2x-x=4+8\)
↔ \(x=12\)
Vậy x = 12 thì A = 2
b) Để A < 1
↔ \(\dfrac{x+4}{x-4}\) < 1
→ \(x+4\) < \(x-4\)
↔ 0x < -8 (vô lý)
Vậy không có giá trị của x nào thỏa mãn A < 1