Cho a > b > 0. CMR : \(a+\dfrac{1}{b\left(a-b\right)}\ge3\)
Cho a,b,c >0 thỏa mãn abc = 1 CMR :
\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\)
Cho \(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
CMR: \(\dfrac{ab+1}{\left(a+b\right)^2}+\dfrac{bc+1}{\left(b+c\right)^2}+\dfrac{ca+1}{\left(c+a\right)^2}\ge3\)
Từ giả thiết:
\(a^2+b^2+c^2+a^2+b^2+c^2+2\left(ab+bc+ca\right)\le4\)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ca\le2\)
Ta có:
\(\dfrac{ab+1}{\left(a+b\right)^2}=\dfrac{1}{2}.\dfrac{2ab+2}{\left(a+b\right)^2}\ge\dfrac{1}{2}.\dfrac{2ab+a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)^2}=\dfrac{1}{2}\dfrac{\left(a+b\right)^2+\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
Tương tự và cộng lại, đồng thời đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\):
\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{1}{2}\left(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\right)\ge\dfrac{3}{2}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{yz.xz.xy}{x^2y^2z^2}}=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Bài 1: Cho a, b, c > 1. CMR: \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Bài 2: Cho các số x, y, z > 0 thoả mãn: \(\dfrac{x\left(y+z-x\right)}{logx}=\dfrac{y\left(z+x-y\right)}{logy}=\dfrac{z\left(x+y-z\right)}{logz}\). CMR: xy.yx = yz.zy = xz.zx
Cho a>b\(\ge\)0.CMR:
a+\(\dfrac{1}{\left(b+1\right)^2\left(a-b\right)}\ge3\)
(Sử dụng Cauchy)
Cho các số thực dương a,b,c thỏa mãn abc =1 .CMR
\(\dfrac{3+a}{\left(1+a\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Bài này đã có ở đây:
Cho các số thực dương a,b,c thỏa mãn abc =1 .CMR
\(\dfrac{3+a}{\left(1+a\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Cho các số thực dương a,b,c thỏa mãn abc=1 CMR:
\(\dfrac{3+a}{\left(a+1\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Bài 1 : Cho \(a>b>0\)
CMR : \(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
Dấu "=" xảy ra khi nào
Bài 2 : Cho \(a,b>0\)
CM : \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3\)
Dấu "=" xảy ra khi nào
1. Ta có: \(a-b+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}\)
\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}+b\)(1)
lại có: \(\dfrac{4}{b+1}+b+1\ge4\)
\(\dfrac{4}{b+1}+b\ge3\)(2)
Từ (1),(2) ta có:\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\\b+1=\dfrac{4}{b+1}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
2. Ta có\(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3\)
\(\Leftrightarrow2a^3+1\ge12ab-12b^2\)
\(\Leftrightarrow2a^3+1-12ab+12b^2\ge0\)
\(\Leftrightarrow2a^3-3a^2+1+3\left(a-2b\right)^2\ge0\)
\(\Leftrightarrow\left(2a+1\right)\left(a-1\right)^2+3\left(a-2b\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\a-2b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\)
cho a, b, c là các số thực dương. CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3+\dfrac{2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge5-\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)
Do \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}=\dfrac{2a^2}{ab+ac}+\dfrac{2b^2}{bc+ab}+\dfrac{2c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\ge5\)
Điều này hiển nhiên đúng do:
\(VT=\dfrac{2}{3}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca}+\dfrac{6\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}+\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
\(VT\ge2\sqrt{\dfrac{12\left(a+b+c\right)^2\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=5\)
Dấu "=" xảy ra khi \(a=b=c\)