Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Hà Tiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2020 lúc 15:39

a) Chứng minh ΔABC=ΔAFE

Xét ΔABC và ΔAFE có

AB=AF(gt)

\(\widehat{BAC}=\widehat{FAE}\)(hai góc đối đỉnh)

AC=AE(gt)

Do đó: ΔABC=ΔAFE(c-g-c)

b) Chứng minh ΔABM=ΔAFN

Ta có: ΔABC=ΔAFE(cmt)

\(\widehat{B}=\widehat{F}\)(hai góc tương ứng)

Ta có: ΔABC=ΔAFE(cmt)

⇒BC=FE(hai cạnh tương ứng)

\(BM=CM=\frac{BC}{2}\)(M là trung điểm của BC)

\(FN=EN=\frac{FE}{2}\)(N là trung điểm của FE)

nên BM=CM=FN=EN

Xét ΔABM và ΔAFN có

BM=FN(cmt)

\(\widehat{B}=\widehat{F}\)(cmt)

AB=AF(gt)

Do đó: ΔABM=ΔAFN(c-g-c)

Khách vãng lai đã xóa
💋Amanda💋
20 tháng 3 2020 lúc 15:39
https://i.imgur.com/zZxqSjh.jpg
Khách vãng lai đã xóa
thái quang phong
20 tháng 3 2020 lúc 15:46

A B C E F M N a) Xét △ABC và △AEF có :

AF = AB (gt)

∠FAE = ∠BAC ( 2 góc đối đỉnh )

AE = AC (gt)

⇒ △ABC = △AEF (c.g.c)

\(\left\{{}\begin{matrix}FE=AB\\F=B\end{matrix}\right.\)

b)Ta có FE = AB (CMT)

Mà NF = NE = \(\frac{FE}{2}\)

MB = MC = \(\frac{BC}{2}\)

⇒NF = MB

Xét △ABM và △AFN có :

AF = AB (gt)

∠F = ∠B (CMT)

NF = MB (CMT)

⇒ △ABM = △AFN (c.g.c)

Nếu thấy đúng thì nhớ tick cho mk nha ! Thank you !!!!!

CHÚC BẠN HỌC TỐT (^_^) !!!!!

Khách vãng lai đã xóa
Trang Phạm Hải Thiên
Xem chi tiết
Trúc Giang
22 tháng 4 2020 lúc 9:39

Tam giác cân

a/ Có: ΔABC cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Có: \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^0\\\widehat{ACB}+\widehat{ACE}=180^0\end{matrix}\right.\) (kề bù)

Mà: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\) \(\widehat{ABD}=\widehat{ACE}\)

Ta có: \(\left\{{}\begin{matrix}AB=BD\left(GT\right)\\AC=CE\left(GT\right)\end{matrix}\right.\)

Mà: AB = AC (ΔABC cân tại A)

=> BD = CE

Xét ΔABD và ΔACE ta có:

AB = AC (ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

BD = CE (cmt)

=> ΔABD = ΔACE (c - g - c)

b/ Thiếu đề

c/ Có: AB = BD (GT)

=> ΔABD cân tại B

d/ Có: ΔABD = ΔACE (câu a)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{D}=\widehat{E}\\\widehat{ABD}=\widehat{ACE}\end{matrix}\right.\) (2 góc tương ứng)

Có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{ABE}=180^0\\\widehat{ACE}+\widehat{ACD}=180^0\end{matrix}\right.\) (kề bù)

Mà: \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Có: \(\left\{{}\begin{matrix}BD+BC=DC\\BC+CE=BE\end{matrix}\right.\)

Mà: BD = CE (GT) và BC chung

=> DC = BE

Xét ΔACD và ΔABE ta có:

DC = BE (cmt)

\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)

AB = AC (ΔABC cân tại A)

=> ΔACD = ΔABE (c - g - c)

Trương Nữ Yến Nhi
Xem chi tiết
Nhi Le
Xem chi tiết
Trương Hồng Hạnh
6 tháng 12 2016 lúc 8:35

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

Trinh Quoc
Xem chi tiết
Ngọcc Ngọcc
Xem chi tiết

A B C D E H K I

Tuan Dang
Xem chi tiết
Phan Thanh Sơn
Xem chi tiết
daohuyentrang
Xem chi tiết