cho tam giác ABC,AB=AC,M là trung điểm của BC.Trên tia đối cua tia BC lay D.Tren tia doi cua tia CB lay E,BD=DE.CM:
a.TAm giac ABM=Tam giac ACM
b.TAm giac ABD= tam giac ACE
c.M là trung điểm của DE
cho tam giac ABC. Tren tia doi cua tia AB lay AE=AC,tren tia doi cua AC lay AF=AB. Noi A voi trung diem M cua BC va A voi trung diem N cua EF. Chung minh
a)tam giac ABC=tam giac AFE
b)tam giac ABM=tam giacAFN
a) Chứng minh ΔABC=ΔAFE
Xét ΔABC và ΔAFE có
AB=AF(gt)
\(\widehat{BAC}=\widehat{FAE}\)(hai góc đối đỉnh)
AC=AE(gt)
Do đó: ΔABC=ΔAFE(c-g-c)
b) Chứng minh ΔABM=ΔAFN
Ta có: ΔABC=ΔAFE(cmt)
⇒\(\widehat{B}=\widehat{F}\)(hai góc tương ứng)
Ta có: ΔABC=ΔAFE(cmt)
⇒BC=FE(hai cạnh tương ứng)
mà \(BM=CM=\frac{BC}{2}\)(M là trung điểm của BC)
và \(FN=EN=\frac{FE}{2}\)(N là trung điểm của FE)
nên BM=CM=FN=EN
Xét ΔABM và ΔAFN có
BM=FN(cmt)
\(\widehat{B}=\widehat{F}\)(cmt)
AB=AF(gt)
Do đó: ΔABM=ΔAFN(c-g-c)
a) Xét △ABC và △AEF có :
AF = AB (gt)
∠FAE = ∠BAC ( 2 góc đối đỉnh )
AE = AC (gt)
⇒ △ABC = △AEF (c.g.c)
⇒\(\left\{{}\begin{matrix}FE=AB\\F=B\end{matrix}\right.\)
b)Ta có FE = AB (CMT)
Mà NF = NE = \(\frac{FE}{2}\)
MB = MC = \(\frac{BC}{2}\)
⇒NF = MB
Xét △ABM và △AFN có :
AF = AB (gt)
∠F = ∠B (CMT)
NF = MB (CMT)
⇒ △ABM = △AFN (c.g.c)
Nếu thấy đúng thì nhớ tick cho mk nha ! Thank you !!!!!
CHÚC BẠN HỌC TỐT (^_^) !!!!!
cho tam giac ABC can tai A.tren tia doi cua bc lay d sao cho AB=BD. tren tia doi cua CB lay E sao cho AC=CE cmr
a/ tam giac ABD = TAM GIAC ACE
B/cm EF//BC
C/tam giac ABD can
d/tam giac ADC= tam giac AEB
a/ Có: ΔABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Có: \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^0\\\widehat{ACB}+\widehat{ACE}=180^0\end{matrix}\right.\) (kề bù)
Mà: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\) \(\widehat{ABD}=\widehat{ACE}\)
Ta có: \(\left\{{}\begin{matrix}AB=BD\left(GT\right)\\AC=CE\left(GT\right)\end{matrix}\right.\)
Mà: AB = AC (ΔABC cân tại A)
=> BD = CE
Xét ΔABD và ΔACE ta có:
AB = AC (ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
BD = CE (cmt)
=> ΔABD = ΔACE (c - g - c)
b/ Thiếu đề
c/ Có: AB = BD (GT)
=> ΔABD cân tại B
d/ Có: ΔABD = ΔACE (câu a)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{D}=\widehat{E}\\\widehat{ABD}=\widehat{ACE}\end{matrix}\right.\) (2 góc tương ứng)
Có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{ABE}=180^0\\\widehat{ACE}+\widehat{ACD}=180^0\end{matrix}\right.\) (kề bù)
Mà: \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Có: \(\left\{{}\begin{matrix}BD+BC=DC\\BC+CE=BE\end{matrix}\right.\)
Mà: BD = CE (GT) và BC chung
=> DC = BE
Xét ΔACD và ΔABE ta có:
DC = BE (cmt)
\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)
AB = AC (ΔABC cân tại A)
=> ΔACD = ΔABE (c - g - c)
cho tam giac ABC có B=2C.tia phan giac cua goc B cat AC tai D.tren tia doi cua tia BD lay diem E sao cho BE=AC. tren tia doi cua tia CB lay diem K sao cho CK=AB. chung minh rang AE=AK
Cho tam giac ABC do AB=AC. Goi M la trung diem cua canhBC
a) Chung minh tam giac ABM=tam giac ACM va AM vuong goc BC
b) Goi D la trung diem cua canh AC. Tren tia BD lay diem E sao cho DB=DE Chung minh tam giac BDA=tam giac EDC vaAB//CE
c) Tren tia doi cua MA lay diem F sao cho M la trung diem AF
e) Chung minh :E, C, F thang hang
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
cho tam giac abc goi d va e la trung diem cua ab va ac , tren tia doi cua tia ed lay diem m sao cho em = ed , tren tia doi cua tia eb lay diem n sao co en = eb a , chung minh tam giac aed = tam giac cem . b, m la trung diem cua cn . c, de // bc va 2de = bc
ho tam giac ABC,lay diem D thuoc tia doi cua tia BC sao cho BD=BA,lay diem E thuoc tia doi cua tia CB sao cho CE=CA.2diem H va K lan luot la trung diem cua AD va AE. I la giao diem cua HB va KC.
cm: a.AH la duong gi doi voi tam giac ABD
b.AI la tia phan giac cua goc ABC
c.duong trung truc cua DE di qua diem I
1 cho tam giác ABC có AB=AC,M Là trung điểm của cạnh BC.trên tia đối của BC lấy điểm D,trên tia đối của tia CB lấy E sao cho BD=CE.a,CMR tam giac MAB=tam giac MAC b,CMR tam giac AMD=tam giac AME c, CMR AM là tia phân giác chung của tam giác BAC và tam giác DAE
Cho tam giac ABC co AB= AC. Tia phan giac cua goc BAC cat BC tai D
CMR Tam giac ABD = tam giac ACD
Tren tia doi cua tia AD lay E sao cho AE=AD va tren tia doi cua tia AB lay F sao cho AF=AB CMR EF=BD
Goi H la trung diem cua FC. Cmr AH la tia phan giac cua goc CAF
CMR AH//BC
Giai giup minh som nhat, chi tiet nhat, minh cho 5 sao!!!!
cho tam giac ABC nhon . Tren tia doi cua tia AB , lay AD=AC, tren tia doi cua tia AC lay AE=AB
1, So sanh BC va DE
2, tam giac ACD va tam giac ABE la tam giac gi ?
3, Goi M la trung diem cua BE. Chung minh AM vuong goc BE