Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long Nguyen
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 5 2016 lúc 0:35

Đề bài đúng phải là : Cho a,b,c thỏa mãn a+b+c=0 . CMR : \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

a) Từ \(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^5=-a^5\)

\(\Rightarrow b^5+5b^4c+10b^3c^2+10b^2c^3+5bc^4+c^5=-a^5\)

\(\Rightarrow\left(a^5+b^5+c^5\right)+5bc\left(b^3+2b^2c+2bc^2+c^3\right)=0\)

\(\Rightarrow\left(a^5+b^5+c^5\right)+5bc\left[\left(b+c\right)\left(b^2-bc+c^2\right)+2bc\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a^5+b^5+c^5\right)+5bc\left(b+c\right)\left(b^2+bc+c^2\right)=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[\left(b^2+2bc+c^2\right)+b^2+c^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)=5abc\left[\left(b+c\right)^2+b^2+c^2\right]\)

Vậy : \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

 

Nguyễn Duy Khánh
Xem chi tiết
Nguyễn Xuân Anh
28 tháng 1 2018 lúc 22:48

Theo bài ra ta có: x4+y4=a4+b4 =>x4-a4=b4-y4 =>(x2-a2)(x2+a2) = (b2-y2)(b2+y2) =>(x-a)(x+a)(x2+a2) = (b-y)(b+y)(b2+y2) (1) 
Ta có: x+y=a+b=>x-a=b-y (2) 
Từ (1) và (2) suy ra 
(b-y)(x+a)(x2+a2) - (b-y)(b+y)(b2+y2) = 0 
=>(b-y) [(x+a)(x2+a2) - (b+y)(b2+y2)] = 0 
Nếu b=y thì x=a, suy ra xn+yn=an+bn 
Nếu (x+a)(x2+a2)-(b+y)(b2+y2)=0 
=>(x+a)(x2+a2)=(b+y)(b2+y2
=>x+a=b+y và x2+a2=y2+b2 (*) 
=>x=b+y-a (3) và x2+a2=y2+b2 (4) 
Thay (3) vào (4) ta được: 
(b+y-a)2+a2=y2+b2 
=>b2+y2+a2+2by-2ab-2ay+a2=b2+y2 
=>2a2+2by-2ab-2ay=0 
=>a2+by-ab-ay=0 
=>a(a-b)-y(a-b)=0 =>(a-b)(a-y)=0 
=>a=b hoặc a=y 
*Nếu a=b từ (*) suy ra x=y 
=> xn+yn=an+bn 
*Nếu a=y từ (*) suy ra x=b 
=>xn+yn=an+bn 
Vậy xn+yn=an+bn 

Lưu ý: biểu thức chỉ đúng với n dương

Nguyễn Duy Khánh
29 tháng 1 2018 lúc 21:25

\(thanks\)   bn nhé!!!!!

NTN vlogs
30 tháng 12 2018 lúc 19:04

Theo bài ra ta có: x4+y4=a4+b4 =>x4-a4=b4-y4 =>(x2-a2)(x2+a2) = (b2-y2)(b2+y2) =>(x-a)(x+a)(x2+a2) = (b-y)(b+y)(b2+y2) (1) 
Ta có: x+y=a+b=>x-a=b-y (2) 
Từ (1) và (2) suy ra 
(b-y)(x+a)(x2+a2) - (b-y)(b+y)(b2+y2) = 0 
=>(b-y) [(x+a)(x2+a2) - (b+y)(b2+y2)] = 0 
Nếu b=y thì x=a, suy ra xn+yn=an+bn 
Nếu (x+a)(x2+a2)-(b+y)(b2+y2)=0 
=>(x+a)(x2+a2)=(b+y)(b2+y2
=>x+a=b+y và x2+a2=y2+b2 (*) 
=>x=b+y-a (3) và x2+a2=y2+b2 (4) 
Thay (3) vào (4) ta được: 
(b+y-a)2+a2=y2+b2 
=>b2+y2+a2+2by-2ab-2ay+a2=b2+y2 
=>2a2+2by-2ab-2ay=0 
=>a2+by-ab-ay=0 
=>a(a-b)-y(a-b)=0 =>(a-b)(a-y)=0 
=>a=b hoặc a=y 
*Nếu a=b từ (*) suy ra x=y 
=> xn+yn=an+bn 
*Nếu a=y từ (*) suy ra x=b 
=>xn+yn=an+bn 
Vậy xn+yn=an+bn 

Thịnh Trần Toàn
Xem chi tiết
Kiều Oanh
1 tháng 1 2016 lúc 10:32

Ta có: x^4+y^4=a^4+b^4 
=>x^4-a^4=b^4-y^4 
=>(x^2-a^2)(x^2+a^2) = (b^2-y^2)(b^2+y^2) 
=>(x-a)(x+a)(x^2+a^2) = (b-y)(b+y)(b^2+y^2) (1) 
Ta lại có: x+y=a+b 
=>x-a=b-y (2) 
Từ (1) và (2) suy ra 
(b-y)(x+a)(x^2+a^2) - (b-y)(b+y)(b^2+y^2) = 0 
=>(b-y) [(x+a)(x^2+a^2) - (b+y)(b^2+y^2)] = 0 
Nếu b=y thì x=a, suy ra x^n+y^n=a^n+b^n 
Nếu (x+a)(x^2+a^2)-(b+y)(b^2+y^2)=0 
=>(x+a)(x^2+a^2)=(b+y)(b^2+y^2) 
=>x+a=b+y và x^2+a^2=y^2+b^2 (*) 
=>x=b+y-a (3) và x^2+a^2=y^2+b^2 (4) 
Thay (3) vào (4) ta được: 
(b+y-a)^2+a^2=y^2+b^2 
=>b^2+y^2+a^2+2by-2ab-2ay+a^2=b^2+y^2 
=>2a^2+2by-2ab-2ay=0 
=>a^2+by-ab-ay=0 
=>a(a-b)-y(a-b)=0 
=>(a-b)(a-y)=0 
=>a=b hoặc a=y 
Nếu a=b từ (*) suy ra x=y 
=> x^n+y^n=a^n+b^n
Nếu a=y từ (*) suy ra x=b 
=>x^n+y^n=a^n+b^n 
Vậy x^n+y^n=a^n+b^n 

Thịnh Trần Toàn
1 tháng 1 2016 lúc 14:54

Thank bạn nhiều. Chúc bạn một năm ms vui vẻ nhé!

Kudo Shinichi
3 tháng 1 2016 lúc 20:41

nhìn vào mà lóa hết cả mắt luôn

Vương Ngọc Uyển
Xem chi tiết
cô nàng lém lỉnh
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Vương Ngọc Uyển
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

Đoàn Ngọc Ly
Xem chi tiết
Đoàn Ngọc Ly
7 tháng 11 2018 lúc 21:16

C2 là = 8xyz nha mình viết nhầm

Nguyễn Lê Phước Thịnh
18 tháng 11 2022 lúc 19:57

Câu 2: 

\(\left\{{}\begin{matrix}y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\\x+y>=2\sqrt{xy}\end{matrix}\right.\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z

sssss
Xem chi tiết
Kim Taehyung
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Nguyễn Quang Thành
1 tháng 2 2016 lúc 20:28

Chứng minh ra

Luật Lê Bá
Xem chi tiết